
Integrator's Guide
■ SAP BusinessObjects Data Services 4.1 Support Package 1 (14.1.1.0)

2012-11-22

© 2012 SAP AG. All rights reserved.SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP
BusinessObjects Explorer, StreamWork, SAP HANA and other SAP products and services mentioned

Copyright

herein as well as their respective logos are trademarks or registered trademarks of SAP AG in
Germany and other countries.Business Objects and the Business Objects logo, BusinessObjects,
Crystal Reports, Crystal Decisions, Web Intelligence, Xcelsius, and other Business Objects products
and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of Business Objects Software Ltd. Business Objects is an SAP company.Sybase and
Adaptive Server, iAnywhere, Sybase 365, SQL Anywhere, and other Sybase products and services
mentioned herein as well as their respective logos are trademarks or registered trademarks of Sybase,
Inc. Sybase is an SAP company. Crossgate, m@gic EDDY, B2B 360°, B2B 360° Services are
registered trademarks of Crossgate AG in Germany and other countries. Crossgate is an SAP
company. All other product and service names mentioned are the trademarks of their respective
companies. Data contained in this document serves informational purposes only. National product
specifications may vary.These materials are subject to change without notice. These materials are
provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP Group products and services
are those that are set forth in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an additional warranty.

2012-11-22

Contents

Welcome to SAP BusinessObjects Data Services..7Chapter 1

Welcome...71.1
Documentation set for SAP BusinessObjects Data Services...71.2
Accessing documentation..91.3
Accessing documentation on Windows..101.3.1
Accessing documentation on UNIX..101.3.2
Accessing documentation from the Web..101.3.3
SAP BusinessObjects information resources...101.4

Web service support...13Chapter 2

Overview..132.1
Web services technologies..142.2
SOAP..142.2.1
WSDL..142.2.2
XML Schema...152.2.3
UDDI...152.2.4

Using SAP BusinessObjects Data Services as a web service provider................................17Chapter 3

WSDL basics...183.1
Building a WSDL file..193.1.1
Tips for using the WSDL file...233.1.2
WSDL versions..243.1.3
Creating a client to use web services...243.2
Design choices..253.2.1
Supported web service operations...253.3
Connection port...263.3.1
Realtime_Service_Admin port..273.3.2
Batch_Job_Admin port...293.3.3
Real-time_Services port...373.3.4
Batch_Jobs port...383.3.5
Repo_Operations port..403.3.6
Optimizing real-time web service performance...463.4

2012-11-223

Enabling SSL support...473.5
To configure SSL on the web application server...473.5.1
Error reporting..483.6
Administrator log..483.6.1
Web service log...493.6.2
Error messages..493.6.3

Consuming external web services in SAP BusinessObjects Data Services.........................51Chapter 4

To access a web service using the Designer..514.1
To add web service calls to a job..534.2
Configuring HTTP header fields..534.3
To configure standard HTTP header fields..544.3.1
To configure dynamic HTTP header fields...544.3.2
Enabling SSL support...544.4
To configure SSL on the native web service datastore...554.4.1
To configure SSL in the runtime execution file..554.4.2
Enabling WS-Security support..554.5
To configure WS-Security on the native web service datastore..564.5.1

Using the Message Client API..57Chapter 5

Interface components...575.1
Creating the connection...585.2
Sending messages...585.3
Closing the connection...595.4
Pseudo code example..595.5
C++ API reference...595.6
Class RTServiceClient...595.6.1
Class RTServiceClientError..605.6.2
Java API reference...615.7
Class RTServiceClient...615.7.1

Using the JMS adapter...63Chapter 6

Introduction..636.1
About this section..636.1.1
Adapter overview...646.1.2
Installation and configuration..656.2
JMS adapter installation...656.2.1
JMS adapter configuration...676.2.2
Using the JMS adapter..786.3
To start an instance of the JMS adapter..796.3.1

2012-11-224

Contents

To run the sample..806.3.2
Testing PutGet: Request/Reply..826.3.3
Testing PutTopic: Request/Acknowledge...846.3.4
Testing Get: Request/Reply...856.3.5
Testing GetTopic: Request/Acknowledge..876.3.6
Testing Get: Request/Acknowledge...886.3.7
Testing Put: Request/Acknowledge...896.3.8
Technical implementation...906.3.9
Appendix..916.4
Weblogic as JMS provider...916.4.1

Using the HTTP adapter..93Chapter 7

Introduction..937.1
Audience and assumptions...937.1.1
About this section..937.1.2
Overview..937.2
Architecture...947.3
Installation and configuration..957.4
To configure the HTTP Adapter..967.4.1
To configure an HTTP Adapter instance...967.4.2
To configure an operation instance...987.4.3
Defining the adapter datastore...1017.4.4
Configuring SSL with the HTTP adapter...1037.4.5
Using the HTTP Adapter...1037.5
Testing the Request/Reply operation...1047.5.1
Testing the Request/Acknowledge operation...1057.5.2
Error handling and tracing...1077.6

Using the SuccessFactors adapter...109Chapter 8

About this section..1098.1
Overview..1098.1.1
Audience and assumptions...1098.1.2
Installation and configuration ...1098.2
Configure the SuccessFactors adapter instance..1108.2.1
Start and stop the adapter instance ...1118.2.2
Create a SuccessFactor adaptor datastore ...1118.2.3
Browse and import metadata...1128.2.4
Use SuccessFactor tables as a source or a target in your dataflow......................................1138.2.5
Manually add the SuccessFactors certificate..1158.2.6

2012-11-225

Contents

Object creation XML toolkit..117Chapter 9

Overview..1179.1
Using the toolkit...1179.2
Templating objects...1189.2.1
Exporting objects...1189.2.2
Adapting objects..1189.2.3
Using web services..1199.2.4
Encrypting passwords..1209.2.5
Best practices..1219.2.6
Limitations...1229.2.7
XML schema reference..1229.3
Batch job..1239.3.1
Workflow...1269.3.2
Dataflow..1279.3.3
Script...1289.3.4
File format..1299.3.5
Database datastore..1349.3.6
Database table...1359.3.7
Data Quality transforms...1399.3.8
Query transform...1419.3.9
Parameters and variables...1439.3.10
Basic example..1449.3.11

Job launcher execution commands...151Chapter 10

Legacy adapter information...153Chapter 11

Legacy adapter for external web services..15311.1
Legacy adapter installation...15311.1.1
Legacy adapter configuration...15511.1.2
Configuring SSL with the legacy adapter..15711.1.3
Legacy adapter error messages...15811.1.4

Index 161

2012-11-226

Contents

Welcome to SAP BusinessObjects Data Services

1.1 Welcome

SAP BusinessObjects Data Services delivers a single enterprise-class solution for data integration,
data quality, data profiling, and text data processing that allows you to integrate, transform, improve,
and deliver trusted data to critical business processes. It provides one development UI, metadata
repository, data connectivity layer, run-time environment, and management console—enabling IT
organizations to lower total cost of ownership and accelerate time to value. With SAP BusinessObjects
Data Services, IT organizations can maximize operational efficiency with a single solution to improve
data quality and gain access to heterogeneous sources and applications.

1.2 Documentation set for SAP BusinessObjects Data Services

You should become familiar with all the pieces of documentation that relate to your SAP BusinessObjects
Data Services product.

What this document providesDocument

Information about administrative tasks such as monitoring, lifecycle management,
security, and so on.Administrator's Guide

Information about customer issues fixed in this release.Customer Issues Fixed

Information about how to use SAP BusinessObjects Data Services Designer.Designer Guide

Information about available SAP BusinessObjects Data Services books, languages,
and locations.Documentation Map

Information about and procedures for installing SAP BusinessObjects Data Services
in a Windows environment.

Installation Guide for
Windows

Information about and procedures for installing SAP BusinessObjects Data Services
in a UNIX environment.

Installation Guide for
UNIX

Information for third-party developers to access SAP BusinessObjects Data Services
functionality using web services and APIs.Integrator's Guide

2012-11-227

Welcome to SAP BusinessObjects Data Services

What this document providesDocument

Information about the application, its components and scenarios for planning and
designing your system landscape. Information about SAP BusinessObjects Infor-
mation Steward is also provided in this guide.

Master Guide

Information about how to use SAP BusinessObjects Data Services Administrator
and SAP BusinessObjects Data Services Metadata Reports.

Management Console
Guide

Information about how to improve the performance of SAP BusinessObjects Data
Services.

Performance Optimiza-
tion Guide

Detailed reference material for SAP BusinessObjects Data Services Designer.Reference Guide

Important information you need before installing and deploying this version of SAP
BusinessObjects Data Services.Release Notes

A compiled “master” PDF of core SAP BusinessObjects Data Services books con-
taining a searchable master table of contents and index:
• Administrator's Guide
• Designer Guide
• Reference Guide
• Management Console Guide
• Performance Optimization Guide
• Supplement for J.D. Edwards
• Supplement for Oracle Applications
• Supplement for PeopleSoft
• Supplement for Salesforce.com
• Supplement for Siebel
• Supplement for SAP
• Workbench Guide

Technical Manuals

Information about building dictionaries and extraction rules to create your own ex-
traction patterns to use with Text Data Processing transforms.

Text Data Processing
Extraction Customiza-
tion Guide

Information about the linguistic analysis and extraction processing features that the
Text Data Processing component provides, as well as a reference section for each
language supported.

Text Data Processing
Language Reference
Guide

A step-by-step introduction to using SAP BusinessObjects Data Services.Tutorial

Release-specific product behavior changes from earlier versions of SAP Busines-
sObjects Data Services to the latest release. This manual also contains information
about how to migrate from SAP BusinessObjects Data Quality Management to SAP
BusinessObjects Data Services.

Upgrade Guide

Highlights of new key features in this SAP BusinessObjects Data Services release.
This document is not updated for support package or patch releases.What's New

2012-11-228

Welcome to SAP BusinessObjects Data Services

What this document providesDocument

Provides users with information about how to use the Workbench to migrate data
and database schema information between different database systems.Workbench Guide

In addition, you may need to refer to several Supplemental Guides.

What this document providesDocument

Information about interfaces between SAP BusinessObjects Data Services
and J.D. Edwards World and J.D. Edwards OneWorld.Supplement for J.D. Edwards

Information about the interface between SAP BusinessObjects Data Services
and Oracle Applications.

Supplement for Oracle Applica-
tions

Information about interfaces between SAP BusinessObjects Data Services
and PeopleSoft.Supplement for PeopleSoft

Information about how to install, configure, and use the SAP BusinessObjects
Data Services Salesforce.com Adapter Interface.Supplement for Salesforce.com

Information about interfaces between SAP BusinessObjects Data Services,
SAP Applications, SAP Master Data Services, and SAP NetWeaver BW.Supplement for SAP

Information about the interface between SAP BusinessObjects Data Services
and Siebel.Supplement for Siebel

We also include these manuals for information about SAP BusinessObjects Information platform services.

What this document providesDocument

Information for administrators who are responsible for
configuring, managing, and maintaining an Information
platform services installation.

Information Platform Services Administrator's Guide

Installation procedures for SAP BusinessObjects Infor-
mation platform services on a UNIX environment.

Information Platform Services Installation Guide for
UNIX

Installation procedures for SAP BusinessObjects Infor-
mation platform services on a Windows environment.

Information Platform Services Installation Guide for
Windows

1.3 Accessing documentation

2012-11-229

Welcome to SAP BusinessObjects Data Services

You can access the complete documentation set for SAP BusinessObjects Data Services in several
places.

1.3.1 Accessing documentation on Windows

After you install SAP BusinessObjects Data Services, you can access the documentation from the Start
menu.
1. Choose Start > Programs > SAP BusinessObjects Data Services 4.1 > Data Services

Documentation > All Guides.
2. Click the appropriate shortcut for the document that you want to view.

1.3.2 Accessing documentation on UNIX

After you install SAP BusinessObjects Data Services, you can access the documentation by going to
the directory where the printable PDF files were installed.
1. Go to <LINK_DIR>/doc/book/en/.
2. Using Adobe Reader, open the PDF file of the document that you want to view.

1.3.3 Accessing documentation from the Web

You can access the complete documentation set for SAP BusinessObjects Data Services from the SAP
BusinessObjects Business Users Support site.

To do this, go to http://help.sap.com/bods.

You can view the PDFs online or save them to your computer.

1.4 SAP BusinessObjects information resources

A global network of SAP BusinessObjects technology experts provides customer support, education,
and consulting to ensure maximum information management benefit to your business.

Useful addresses at a glance:

2012-11-2210

Welcome to SAP BusinessObjects Data Services

http://help.sap.com/bods

ContentAddress

Information about SAP Business User Support pro-
grams, as well as links to technical articles, down-
loads, and online forums. Consulting services can
provide you with information about how SAP Busines-
sObjects can help maximize your information manage-
ment investment. Education services can provide in-
formation about training options and modules. From
traditional classroom learning to targeted e-learning
seminars, SAP BusinessObjects can offer a training
package to suit your learning needs and preferred
learning style.

Customer Support, Consulting, and Education
services

http://service.sap.com/

SAP BusinessObjects product documentation.Product documentation

http://help.sap.com/bods/

Get information about supported platforms for SAP
BusinessObjects Data Services.

Use the search function to search for Data Services.
Click the link for the version of Data Services you are
searching for.

Supported Platforms (Product Availability Ma-
trix)

https://service.sap.com/PAM

2012-11-2211

Welcome to SAP BusinessObjects Data Services

http://service.sap.com/
http://help.sap.com/bods
https://service.sap.com/PAM

2012-11-2212

Welcome to SAP BusinessObjects Data Services

Web service support

This section discusses both how an administrator can configure SAP BusinessObjects Data Services
through the Administrator to publish jobs as callable web services, and how an application developer
can access those web services.

The software publishes web services from the Management ConsoleAdministrator. To use SAP
BusinessObjects Data Services as a web service, select the Web Services node in the Administrator's
navigation tree. For general information on using the Administrator, see the Management Console
Guide.

2.1 Overview

Web services are modular business applications based on open standards (WSDL, SOAP, and XML
Schema primarily) that allow integration among different applications and environments through the
Internet. Web services allow parts of existing applications to be used by other applications.

For business intelligence (BI), you can use web services to accomplish the following:
• Access legacy systems
• Conduct computer-to-computer interaction over an internal or external web
• Allow applications constructed in different languages on different platforms to communicate with

each other in an enterprise environment

SAP BusinessObjects Data Services can:
• Publish any job as a callable web service (server functionality)
• Call published web services from within its jobs using the built-in web services datastore (client

functionality)

If you have an application that also supports web services, you can use that application to run batch
and real-time jobs or to publish your application's functionality to be called by data flows.

After you install the software, you can immediately start working with its client functionality because the
built-in web services datastore is a web services client that provides access to a web services server
from a data flow.

Related Topics
• Using SAP BusinessObjects Data Services as a web service provider
• Consuming external web services in SAP BusinessObjects Data Services

2012-11-2213

Web service support

2.2 Web services technologies

SAP BusinessObjects Data Services web services are fully compliant with Web Services Interoperability
(WS-I) Basic Profile 1.0, and support three Java Web Services technologies.

DescriptionWeb service technology

Connection protocol (envelope for XML messages)SOAP

Language used to request a service and return replies (subset of XML)WSDL

Format used for the WSDL fileXML Schema

The software supports SOAP 1.1, WSDL version 1.1 or 2.0, and Apache Axis 1.1 (an industry-standard
SOAP message handler and WSDL parser).

SAP BusinessObjects Data Services is also compliant with the Microsoft .NET environment for web
services. You can import the WSDL that the software generates into Visual Studio .NET and the web
services datastore can call the WSDL that Visual Studio .Net generates.

Note:
The software does not support the Representational State Transfer (REST) web services architecture
or the JSON message format.

2.2.1 SOAP

SAP BusinessObjects Data Services allows you to invoke real-time services using the following:
• Message Client API (which supports C++ and Java connections)
• TCP/IP
• proprietary XML using HTTP

In addition, the software supports the Simple Object Access Protocol (SOAP). SOAP is the industry
standard from the World Wide Web Consortium (WC3.org) used to invoke network resources using
XML over HTTP, HTTPS, and other standard protocols.

A SOAP gateway is built in to the Administrator. The software supports SOAP over HTTP and HTTPS
protocols.

2.2.2 WSDL

2012-11-2214

Web service support

Web Services Description Language (WSDL) is a subset of XML. It is used as a transport mechanism
for XML messages. SAP BusinessObjects Data Services publishes its jobs in WSDL based on
configuration settings applied in the Administrator, and then developers can create a web services client
based on the software's WSDL.

The software also publishes all comments entered into the Designer's Job Descriptions box with each
job that is added to the WSDL file.

The WSDL file generated by the software includes tags (such as services, bindings, ports, and operations)
that support the use of the SOAP protocol. Each tag uses a name that the software provides. For
example:
• You select which jobs to publish in the web service named DataServices_server. In WSDL, a

service is a set of business operations with connection endpoints.
• Binding names include Connection_Operations, Batch_Jobs, Real-time_Services, and

Batch_Job_Admin. WSDL uses bindings to associate operations with ports.
• Operation names have a one-to-one relationship with the names of batch jobs or real-time services.

2.2.3 XML Schema

WSDL uses XML Schemas to define input and output message formats.
• For server functionality, if a real-time service was defined with DTDs, you will need to translate the

DTD format into the XML Schema format.
• For client functionality, the web services datastore imports metadata into SAP BusinessObjects Data

Services using the XML Schema format only.

XML Schema formats are defined in the types element of the WSDL file.

Note:
When you import an XML schema for a real-time web service job, you should use a unique target
namespace for the schema. When Data Services generates the WSDL file for a real-time job with a
source or target schema that has no target namespace, it adds an automatically generated target
namespace to the types section of the XML schema. This can reduce performance because Data
Services must suppress the namespace information from the web service request during processing,
and then reattach the proper namespace information before returning the response to the client.

2.2.4 UDDI

UDDI is a method of publishing comments and other reference information about jobs to an external
web site. SAP BusinessObjects Data Services does not publish information to a UDDI web site because
most web service users work behind enterprise firewalls.

2012-11-2215

Web service support

2012-11-2216

Web service support

Using SAP BusinessObjects Data Services as a web
service provider

After the Administrator publishes batch or real-time jobs as web services, the web application hosts
those web services. When an external application calls into SAP BusinessObjects Data Services through
web services, the application acts as a web services client accessing a web services server.

Web service clients call the published web services, pass in the appropriate parameters, and receive
the results. The software routes calls to the appropriate Job Server and job for processing.

Web services might be used in the following example scenarios:
• Dynamically update an internal web site

Suppose you have an internal web site that manages foreign exchange rate status worldwide for
the Finance department. When foreign exchange rates change more than a certain percentage, a
batch job updates exchange rates in your financial data mart. The rate change initiates a call to a
web service that starts the appropriate batch ETL job.

• Solve a processing issue

Suppose you have an existing Enterprise Application Integration (EAI) bus infrastructure and want
to manage batch processes and EAI transactional processes from within the same infrastructure.
The transactional processes are complex. Their staging is laid out in the order process. However,
EAI work flows do not have the ability to run batch processes.

2012-11-2217

Using SAP BusinessObjects Data Services as a web service provider

The software can publish Web services that allow you to leverage EAI process management category
tools (for example, webMethods Business Process Manager) to control and stage batch processes
alongside its transactional processes.

The work flows might call the software to:
• Perform an initial load of a data mart for real-time reporting
• Refresh the data cache depending on specified business criteria
• Perform complex transforms on hierarchical objects for mapping data between ERP systems

3.1 WSDL basics

WSDL is a subset of XML that you can use to describe network services as a collection of endpoints
capable of exchanging messages.

This table shows the elements in a WSDL file, and describes how those elements are used in the SAP
BusinessObjects Data Services-generated WSDL file.

DescriptionElement Name

Root elementdefinition

Used to group a set of related ports or endpoints to which a client
application will connect. The software publishes a single service in
the WSDL file it generates.

service

Defines a specific web service endpoint that a client can access.
Each port has a unique name and a specific address used for bind-
ing. The software defines ports for web services as:
• Connection_Operations: used for authentication and ping
• Real-time_Services: used for real-time jobs exposed as web

services
• Batch_Jobs: used for batch jobs exposed as web services (each

batch jobs has its own operation)
• Batch_Job_Admin: used for administrative operations for batch

jobs

port

Defines a set of operations that a web service publishes.

A portType is bound to a particular port. The binding specifies the
protocol and data formation for the operations defined by a portType.

portType

2012-11-2218

Using SAP BusinessObjects Data Services as a web service provider

DescriptionElement Name

Defines a specific function call. The software publishes each batch
job and real-time service as an operation. It also publishes connection
operations.

operation

Defines the data to transmit. There is an input (request) message,
which the web service receives from the client, and there is an output
(response) message, which the web service sends back to the client.

message

Defines the data types used in messages sent to/from a web service.type

Related Topics
• SoapAction element

3.1.1 Building a WSDL file

Use the information in the WSDL file produced by SAP BusinessObjects Data Services to create an
application that can access batch jobs and real-time services. Access the WSDL file by making web
service client calls to it using a reference URL.

To view the WSDL file so that you can create your application, use the Web Services node of the
Management ConsoleAdministrator, or open a browser window and search for:

http://hostname:port/DataServices/servlet/webservices?ver=2.0&wsdlxml

3.1.1.1 To configure web service information using the Administrator

1. Open the Administrator.
2. Log in with Administrator-level privileges. Users with Monitor-level privileges cannot configure web

services.

Note:
If you enable security for the WSDL file, SAP BusinessObjects Data Services requires that web
services clients use the user name and password of any user with Administrator-level privileges to
access all published web services.

3. Add connections from Access Servers and repositories to view jobs in the Administrator.

2012-11-2219

Using SAP BusinessObjects Data Services as a web service provider

4. If you plan to publish real-time jobs as web services, configure real-time jobs as real-time services.

The software publishes the following as web services:
• Real-time services enabled as web service operations in the Administrator
• Batch jobs enabled as web service operations in the Administrator
• Connection Operations

• Ping - Used to ping Web services
• Logon and Logout - Security operations that provide controlled access to Web service

operations (if enabled).

5. In the Administrator's navigation tree, select Web Services.
The "Web Services Status" page opens. This page lists Web service operations that are published
in the WSDL. By default, only the Ping operation is automatically published.

6. Click the Web Services Configuration tab.
Use the Configuration tab to open the "Web Services Configuration" page. Use this page to select
jobs and real-time services to be published, enable/disable security for the WSDL file, and to
enable/disable access to full batch job attributes.

7. From the pull-down menu, use Add Real-time Service or Add Batch Job to add jobs or services
to the WSDL, and click Apply.

On the "Add Real-time Service" page, real-time services are grouped by the Access Server for which
the service is configured. To add a real-time service to the WSDL, select an Access Server or select
All, select the check box in front of a real-time service name, and click Add.

On the "Add Batch Job" page, jobs are grouped by the repository on which the job is stored. To add
a job to the WSDL, select a repository or select All, select the check box in front of a job name, and
click Add.

8. (Optional) On the "Web Services Configuration" page, select Enable Session Security and click
Apply to enable security for the WSDL.

Security for published operations is disabled by default.

With security enabled, instead of making a single call to the Administrator to start a batch job or
trigger a real-time service from an external application, clients must make at least three calls:
• The first call logs in to the Administrator and gets a session ID.
• The second call accesses a job or service using the session ID as an input parameter. Create a

call for each job or service you want to access.
• The final call logs out of the session.

9. (Optional) On the "Web Services Configuration" page, from the drop-down menu, select Enable
Job Attributes to allow the input message for all the batch jobs you publish to include all options
supported for submitting batch jobs from the Administrator. The following table lists elements added
to the message:

DescriptionElement

System profile used to run the job.job_system_profile

2012-11-2220

Using SAP BusinessObjects Data Services as a web service provider

DescriptionElement

Monitor sample rate (# of seconds).sampling_rate

Enable auditing (true or false).auditing

Enable recovery (true or false).recovery

Job Server or Server Group.job_server

Trace option to be enabled. You must specify an option to enable
tracing. This element can be repeated for as many trace options as
you require.

The WSDL defines values for the trace option and includes the follow-
ing (all options on the batch job submit page of the administrator):
• job_trace_all
• job_trace_row
• job_trace_session
• job_trace_workflow
• job_trace_dataflow
• job_trace_transform
• job_trace_usertransform
• job_trace_userfunction
• job_trace_abapquery
• job_trace_sqlfunctions
• job_trace_sqlreaders
• job_trace_sqlloaders
• job_trace_optimized_dataflow
• job_trace_table
• job_trace_script
• job_trace_ascomm
• job_trace_rfc_function
• job_trace_table_reader
• job_trace_idoc_file
• job_trace_adapter
• job_trace_communication
• job_trace_parallel_execution
• job_trace_audit

trace

2012-11-2221

Using SAP BusinessObjects Data Services as a web service provider

DescriptionElement

You can distribute the execution of a job or a part of a job across
multiple Job Servers within a Server Group to better balance resource-
intensive operations.

You can specify the following values on the distribution level option
when you execute a job:
• Job: A job can execute on an available Job Server.
• Data flow: Each data flow within a job can execute on an available

Job Server.
• Sub data flow: A resource-intensive operation (such as a sort, table

comparison, or table lookup) within a data flow can execute on
an available Job Server.

Note:
Casing and spacing are important for these values.

distribution_level

10. Navigate back to the "Web Services Status" page, choose the WSDL version you want to create,
and click View WSDL.
A new browser window opens with the WSDL displayed. Use the information in this file to perform
the following:
• Confirm that the software updated the WSDL file with all jobs and services without error.
• Create calls to the software.

Use the information in the WSDL file to configure your application to access batch jobs and
real-time services.

To ensure that your application calls the latest version of the job, update the WSDL when the
metadata imported into the software changes for a job or real-time service by removing then
re-adding a job or service from the "Web Services Configuration" page.

11. After your web service clients are accessing jobs, you can monitor the status of web service operations
on the server by viewing the data on the "Web Services Status" page.

DescriptionColumn name

Same as job or real-time service name.Operation Name

2012-11-2222

Using SAP BusinessObjects Data Services as a web service provider

DescriptionColumn name

For jobs, the port name is Batch_jobs.

For services, the port name is Real-Time_Service.

For built-in operations, the port name is Connection_Op-
erations.

For administrative operations for batch jobs, the port
name is Batch_Job_Admin.

Web Services Port

For jobs, the repository name.

For services, the Access Server name.
Repository/ Access Server

For jobs, a link to the Batch Job History page.

For services, a link to the Real-time Services History
page.

Job Information

Number of client requests successfully processed.Requests Processed

Number of client requests that failed somewhere between
the time that the Web Server receives the request and
the Job Server receives it.

Requests Failed

Number of requests in a queue for Job Server.Requests Pending

Number of requests that failed due to a problem with the
Job Server.Jobs Failed

3.1.2 Tips for using the WSDL file

The WSDL file:
• Appears in the View WSDL window or any browser window by searching for the following URL:

http://hostname:port/DataServices/servlet/webservices?ver=2.0&wsdlxml

2012-11-2223

Using SAP BusinessObjects Data Services as a web service provider

Note:
To support previously-created datastores using a WSDL file with XML schema simple types, manually
delete "ver=2.0&" from the default URL of Web Service and Apply to save as follows:

http://hostname:port/DataServices/servlet/webservices?wsdlxml

• Displays all real-time services and jobs enabled for web services in the Administrator.
• Only displays log on, log off, and session ID information when security is enabled.
• Displays XML Schema formats in the types element.

3.1.3 WSDL versions

From time to time, the WSDL version used by SAP BusinessObjects Data Services may change for a
variety of reasons. For example, the syntax may change in order to operate more efficiently, or to add
support for new technologies.

Although we typically maintain backward compatibility between WSDL versions, we recommend that
you move to the newest WSDL version available in your Data Services installation. The latest version
often includes improvements in web service execution, and older versions may be deprecated and no
longer supported over time.

For more information about the changes between specific WSDL versions, see the Upgrade Guide.

Version history
In general, a WSDL version is deprecated when the version of Data Services in which it was introduced
is no longer supported.

DeprecatedIntroducedWSDL Version

n/aOriginal WSDL release1.0

n/aData Integrator 11.5.0.01.1

n/aData Integrator 11.7.0.02.0

n/aData Services 12.2.12.1

3.2 Creating a client to use web services

To use a published web service, you must know the URL of the target WSDL. The Administrator produces
a WSDL file with this URL: http://hostname:port/DataServices/servlet/webser
vices?ver=2.0&wsdlxml

The batch or real-time jobs must have previously been exposed as web services.

2012-11-2224

Using SAP BusinessObjects Data Services as a web service provider

This section discusses general steps for using a published SAP BusinessObjects Data Services web
service. The tools you use to develop your web services client are your choice and the exact steps in
using those tools vary, but these basic steps apply as a simple overview to all development projects
for web services clients.
1. Import the software's WSDL into your development environment to create a web services client

application.
The incorporated web services appear in the hierarchy of your development environment.

2. Open the web service.
Each available port for the web service is made visible in the IDE.

3. Write the code to call any of the jobs or services provided by the ports.
4. Run the project to execute the code.

Executing the code initiates the web services job. A connection is made to the web services tier of
the Access Server.

The Access Server then sends information to various job servers, which then executes the al_engine
process to run the job, and results are sent back to the Web services client application.

3.2.1 Design choices

SAP BusinessObjects Data Services provides different ways that you can call jobs using web services,
each with benefits and drawbacks:
• Individually published job-specific web services (Batch_Jobs and Real-time_Services ports)

These web services have their schema published directly in the WSDL, and web service development
tools can automatically create classes that serialize and deserialize the input and output XML
messages. However, you need to create a separate operation for each published job.

• Generalized web services (Batch_Jobs_Admin and Realtime_Service_Admin ports)

These web services take a job name as input, but do not directly expose the input schema of the
job. This allows an application to dynamically call different jobs with one web service, but the schema
must be known in advance or generated dynamically with another web service call.

3.3 Supported web service operations

SAP BusinessObjects Data Services creates a WSDL file with a single service definition. It is possible
to create multiple service definitions in a WSDL, but many web service implementations do not support
more than one service definition. To avoid that limitation, the software creates only one service.

Within the service definition, the software defines ports for:

2012-11-2225

Using SAP BusinessObjects Data Services as a web service provider

• Connection_Operations
• Batch_Job_Admin
• Real-time_Services
• Batch_Jobs
• Repo_Operations

3.3.1 Connection port

SAP BusinessObjects Data Services generates WSDL that defines connection operations that belong
to web services. The software supports the following Connection operations.

DescriptionOperation

Verifies the connection to web servicesPing

Verifies secure access before establishing a sessionLogon

Terminates a sessionLogout

Note:
The software generates Logon and Logout operations only if you enable security for published jobs.

3.3.1.1 Ping

The Ping operation is an empty input message with a ping operation request. The output message is
a text string that returns the current SAP BusinessObjects Data Services version, which indicates that
a connection has been established.

3.3.1.2 Logon

The Logon operation is required when you enable SAP BusinessObjects Data Services to provide
secure communication. To access web services, provide an Administrator login name and password
(with Administrator-level privileges). When the software validates them, the logon operation returns an
Administrator session ID that you must include in all subsequent calls to the web services.

2012-11-2226

Using SAP BusinessObjects Data Services as a web service provider

Input message

DescriptionTypeElement

Specifies the type of authentication to use for logging on to a Data
Services web service. Values include:
• secEnterprise: Use for Enterprise authentication
• secLDAP: Use for LDAP authentication
• secWinAD: Use for Windows Active Directory authentication
• secSAPR3: Use for SAP authentication

Stringcms_authen
tication

The CMS server name. If the CMS server is listening on the default
6400 port, then pass only the CMS server name. If the server is listening
on any other port, then also pass the port number.

Stringcms_system

Password for the CMS user.Stringpassword

CMS user name.Stringusername

Output message

DescriptionTypeElement

A unique session ID is returned. Use this session ID in subsequent
Data Services operations for which session security is enabled.StringSessionId

3.3.1.3 Logout

The Logout operation is required when you enable SAP BusinessObjects Data Services to provide
secure communication. When web service communication is complete, call the Logout operation to
terminate the session.

3.3.2 Realtime_Service_Admin port

3.3.2.1 Get_RTMsg_Format

2012-11-2227

Using SAP BusinessObjects Data Services as a web service provider

Use Get_RTMsg_Format to retrieve the input/output format for a real-time service as an XML Schema.
The real-time service does not need to be published as a web service.

Input message

DescriptionTypeElement

The name of the real-time service as displayed in the Administrator.stringserviceName

A selector that determines whether the input or output schema for
the service is returned. Valid strings include:
• in - Returns the input schema.
• out - Returns the output schema.

stringselector

Output message

DescriptionTypeElement

The input or output XML Schema for the real-time service.stringschema

The root element of the returned XML Schema.stringrootElement

The root element namespace of the returned XML Schema.stringrootElementNS

The name of a dependent schema used in the returned XML
Schema, if applicable. This element may be returned multiple times.

stringschemaName

A dependent schema used in the returned XML Schema, if applica-
ble. This element may be returned multiple times.

stringschema

Any error message that resulted while retrieving the XML Schema
for the real-time service.

stringerrorMessage

3.3.2.2 Get_RTService_List

Use the Get_RTService_List operation to retrieve a list of the names of published real-time services.

Input message
Get_RTService_List takes no input message.

2012-11-2228

Using SAP BusinessObjects Data Services as a web service provider

Output message

DescriptionTypeElement

The list of published real-time services.stringserviceName

Any error message that occurred while retrieving the list of real-time
services.

stringerrorMessage

3.3.2.3 Run_Realtime_Service

Use Run_Realtime_Service to call a published real-time service. The real-time service must be running
and published as a web service in the Administrator, and the XML input content must match the input
format defined for the real-time service.

Input message

DescriptionTypeElement

The name of the real-time service as displayed in the Administrator.stringserviceName

The XML input content used to start the real-time service. This
content must match the input format required by the real-time ser-
vice.

stringxmlInput

Output message

DescriptionTypeElement

The XML output content returned by the real-time service. This
content is formatted according to the output schema of the real-time
service called.

stringxmlOutput

Any error message that resulted while attempting to call the real-
time service.

stringerrorMessage

3.3.3 Batch_Job_Admin port

2012-11-2229

Using SAP BusinessObjects Data Services as a web service provider

3.3.3.1 Get_BatchJob_List

Use the Get_BatchJob_List operation to retrieve a list of the names of published batch jobs.

Input message

DescriptionTypeElement

The name of the repository to access. This parameter is optional.stringrepoName

Includes all batch jobs in the repository, not only those published
as web services. This parameter is optional.

booleanallBatchJobs

Output message

DescriptionTypeElement

The list of published batch jobs. This element has an additional at-
tribute, repo, which specifies the name of the repository that contains
the job.

stringjobName

Any error message that occurred while retrieving the list of batch
jobs.

stringerrorMessage

3.3.3.2 Get_BatchJob_RunIDs

Each individual run of an SAP BusinessObjects Data Services batch job is assigned a unique run ID.

Use the Get_BatchJob_RunIDs operation to retrieve a list of run IDs associated with a particular batch
job.

2012-11-2230

Using SAP BusinessObjects Data Services as a web service provider

Input message

DescriptionTypeElement

The name of the batch job.stringjobName

The status code for the type of run IDs requested. Valid codes in-
clude: running, succeeded, error, warning, and all.

stringstatus

The name of the repository to access. When specified, the operation
returns only runIDs from this repository. This element is optional.

stringrepoName

Output message
The response of the Get_BatchJobs_RunIDs operation contains one or more run element. Each run
element contains the following sub-elements:

DescriptionTypeElement

The unique ID for the batch job run.integerrunID

The status code for the batch job run. Valid codes include: running,
succeeded, error, warning, and all.

stringstatus

The repository name associated with the batch job.stringrepoName

Any error message that occurred while retrieving the list of batch
jobs.

stringerrorMessage

3.3.3.3 Get_BatchJob_Status

Use the Get_BatchJob_Status operation to retrieve the status of a particular batch job run.

2012-11-2231

Using SAP BusinessObjects Data Services as a web service provider

Input message

DescriptionTypeElement

The run ID for the particular batch job status desired.integerrunID

The name of the repository to access.stringrepoName

Output message

DescriptionTypeElement

The status for the operation. Valid values include:
• 0 - The operation completed successfully.
• 1 - The operation encountered an error. For example, the repoN-

ame specified is invalid.

integerreturnCode

The status of the batch job run. Valid values include:
• Running - The job is currently running.
• Succeeded - The job completed successfully with no errors.
• Warning - The job completed successfully but warnings occurred.
• Error - The job completed with an error.

stringstatus

3.3.3.4 Get_Error_Log

SAP BusinessObjects Data Services produces several types of log information for a batch job published
as a web service.

Use the Get_Error_Log operation to retrieve the error log for a batch job.

2012-11-2232

Using SAP BusinessObjects Data Services as a web service provider

Input message

DescriptionTypeElement

The batch job run ID for the particular log desired.integerrunID

The name of the repository to access.stringrepoName

The page number of the error log to return. This element is optional.integerpage

Output message

DescriptionTypeElement

The status for the operation. Valid values include:
• 0 - The operation completed successfully.
• 1 - The operation failed to retrieve the error log.

integerreturnCode

The error log associated with the input batch job run ID.stringerror

3.3.3.5 Get_Job_Input_Format

Use Get_Job_Input_Format to retrieve the input format for a batch job as an XML Schema.

Input message

DescriptionTypeElement

The name of the batch job as displayed in the Administrator.stringjobName

The name of the repository to access.stringrepoName

Output message

DescriptionTypeElement

The input format for the batch job, as an XML Schema.stringformat

Any error message that resulted while retrieving the input format
for the batch job.

stringerrorMessage

3.3.3.6 Get_Monitor_Log

2012-11-2233

Using SAP BusinessObjects Data Services as a web service provider

SAP BusinessObjects Data Services produces several types of log information for a batch job published
as a web service.

Use the Get_Monitor_Log operation to retrieve the monitor log for a batch job.

Input message

DescriptionTypeElement

The batch job run ID for the particular log desired.integerrunID

The name of the repository to access.stringrepoName

The page number of the monitor log to return. This element is op-
tional.

integerpage

Output message

DescriptionTypeElement

The status for the operation. Valid values include:
• 0 - The operation completed successfully.
• 1 - The operation failed to retrieve the monitor log.

integerreturnCode

The monitor log associated with the input batch job run ID.stringmonitor

3.3.3.7 Get_Trace_Log

SAP BusinessObjects Data Services produces several types of log information for a batch job published
as a web service.

Use the Get_Trace_Log operation to retrieve the trace log for a batch job.

2012-11-2234

Using SAP BusinessObjects Data Services as a web service provider

Input message

DescriptionTypeElement

The batch job run ID for the particular log desired.integerrunID

The name of the repository to access.stringrepoName

The page number of the trace log to return. This element is optional.integerpage

Output message

DescriptionTypeElement

The status for the operation. Valid values include:
• 0 - The operation completed successfully.
• 1 - The operation failed to retrieve the trace log.

integerreturnCode

The trace log associated with the input batch job run ID.stringtrace

3.3.3.8 Run_Batch_Job

Use Run_Batch_Job to call a batch job with the ability to specify job parameters and global variables.

Input message

DescriptionTypeElement

The name of the batch job as displayed in the Administrator.stringjobName

The name of the repository to access.stringrepoName

The name of the job server to use to execute the job. This element
is optional, but cannot be specified if serverGroup is also specified.

stringjobServer

The name of the server group to use to execute the job. This element
is optional, but cannot be specified if jobServer is also specified.

stringserverGroup

A complex XML element that sets specific job execution parameters.complexjobParameters

A complex XML element that defines global job execution variables.complexglobalVariables

Note:

• If you do not specify a serverGroup or jobServer, the operation attempts to find an available job
server that is attached to the repository by first checking the server group list, and then the job server
list.

2012-11-2235

Using SAP BusinessObjects Data Services as a web service provider

• For detailed information about the jobParameters and globalVariables elements, view the WSDL
from the Administrator. For more information about available job parameters and global variables,
see the Reference Guide.

Output message

DescriptionTypeElement

The process ID number for the batch job execution. Process IDs
can be reused.

intpid

The counter ID number for the batch job excecution. You can use
a counter ID together with a process ID to uniquely identify a specific
instance of the job execution.

intcid

The run ID associated with the specific execution of the batch job.intrid

The repository name associated with the batch job execution.stringrepoName

Any error message that resulted while attempting to call the batch
job.

stringerrorMessage

3.3.3.9 Stop_Batch_Job

Use the Stop_Batch_Job operation to stop a particular batch job run.

2012-11-2236

Using SAP BusinessObjects Data Services as a web service provider

Input message

DescriptionTypeElement

The run ID for the particular batch job run to stop.integerrunID

The name of the repository to access.stringrepoName

Output message

DescriptionTypeElement

The success code for the batch job stop attempt. Valid codes in-
clude:
• 0 - The operation successfully stopped the specified batch job.
• 1 - The operation failed to stop the specified batch job in the

specified repository.

integerreturnCode

The error message associated with a failure to stop a batch job run.stringerrorMessage

3.3.4 Real-time_Services port

SAP BusinessObjects Data Services generates WSDL that defines how to invoke real-time services
enabled as web service operations. Each real-time service name is represented as an operation name
in the WSDL file.

Each real-time service operation has a set of messages that it uses to communicate with the real-time
service. Real-time services use a defined XML message as input and a defined XML message as
output. Real-time services obtain the format of these messages from the repository and provide the
format in the WSDL.

The software supports XML Schemas as its message format for real-time services. A web service
provides only XML Schemas in the WSDL. You will need to convert any DTDs to XML schemas as
necessary.

The repository stores XML Schemas that define the input and output messages as independent
definitions. The WSDL file includes these definitions in the types element.

The messages that an XML Schema defines for each real-time service operation are:
• Header message

If security is enabled for the message, the software defines a secure session identifier in the message
header.

• Input message

When an external web services client invokes it, the input message passes information to a real-time
service. The name of the input message is the name of the operation that the software publishes

2012-11-2237

Using SAP BusinessObjects Data Services as a web service provider

followed by the suffix _Input. The input message contains the message source defined by the
real-time service.

• Output message

The software returns the output message when the real-time service completes. The output message
contains the output generated by the real-time service. The name of the output message is the name
of the operation followed by the suffix _Output. The output message contains the message target
defined by the real-time service.

• Fault message

The software returns a fault message when it cannot invoke the real-time service.

3.3.4.1 Message formats

The following segment shows the syntax that Data Services generates in a WSDL file to define an
operation's messages. In this example:
• RTService represents the name of the real-time service as defined in the Administrator.
• XMLSchemaName represents the name of the XML Schema that was used to create an XML message

source or XML message target in the Designer.
• RootElement represents the root element of the XML Schema.

The software publishes a WSDL that includes input and output XML Schema message formats in the
types element.

Note:
Server support for real-time services requires that you use a valid URL for locating XML Schema (.xsd)
files in an import statement. A local file name cannot be used. For example, the .xsd must be either
self-contained when imported into the software or it must use a network reference (URL), not a file or
relative path reference, as an identifier.

The WSDL file displays the operations for real-time services within a portType tag.

3.3.5 Batch_Jobs port

SAP BusinessObjects Data Services generates WSDL that defines how to start batch jobs. The WSDL
file represents each batch job name as an operation.

In addition, the WSDL file defines an input and output message for each operation. An input message
communicates the input needed by the job at startup (such as the global variables needed to start the
job). An output message either confirms that the job started or presents the errors that prevent the job
from starting.

2012-11-2238

Using SAP BusinessObjects Data Services as a web service provider

WSDL defines the following messages for each operation:
• Header message

When security is enabled for the message, the software defines a secure session identifier in the
message header.

• Input message

The input message passes information needed by the batch job at startup. The name assigned to
the input message is the name of the operation followed by the suffix _Input. The input message
contains global variables.

When security is enabled for the message, the software defines a secure session identifier in the
message header.

• Output message

The software returns the output message when the batch job starts. The output message contains
the job identification. The name of the output message is the name of the operation followed by the
suffix _Output. The output message contains the following IDs:
• OS process ID of the started job
• Job Server Counter ID of the started job

• Fault message

The software returns a fault message if the batch job fails to start. It returns a text description of the
error that prevents the job from starting.

3.3.5.1 SoapAction element

The definition of each batch job operation uses the soapAction element to define the batch job name
needed to launch the job.

The WSDL file displays the soapAction element in the service and port section.

3.3.5.2 Security

When publishing a job as a web service, the Administrator can enable secure access, requiring that
web services clients provide authentication and authorization (an Administrator username and password)
for access to the web service operations. Administrator-level (not Monitor-level) privileges must be
used. That is, you cannot limit access to users based on role. This authentication is SSL-compliant.

If you do not enable secure access and you are using HTTP, web services clients have open access
to all published batch jobs and real-time services.

2012-11-2239

Using SAP BusinessObjects Data Services as a web service provider

Related Topics
• To configure web service information using the Administrator

3.3.6 Repo_Operations port

SAP BusinessObjects Data Services generates WSDL that defines operations that belong to web
services. The software supports the following operations on the Repo_Operations port.

DescriptionOperation

Deletes objects from the repository.Delete_Repo_Objects

Imports an object to the repository.Import_Repo_Object

Validates an object contained in the repository.Validate_Repo_Object

Exports reports to a specified location at runtime.Export_DQReport

3.3.6.1 Delete_Repo_Objects

Use the Delete_Repo_Objects operation to delete objects from the SAP BusinessObjects Data Services
repository.

2012-11-2240

Using SAP BusinessObjects Data Services as a web service provider

Input message

DescriptionTypeElement

The name of the object to delete from the repository. This element
requires the attribute objType and can occur multiple times.

The objType attribute specifies the type of the object:
• BATCH_JOB
• REALTIME_JOB
• WORKFLOW
• DATAFLOW
• ABAP_DATAFLOW
• DATA_QUALITY_TRANSFORM_CONFIGURATION
• DATASTORE
• FILE_FORMAT
• XML_SCHEMA
• DTD
• CUSTOM_FUNCTION
• EXCEL_WORKBOOK
• COBOL_COPYBOOK
• SYSTEM_PROFILE
• SUBSITUTION_CONFIGURATION
• PROJECT
• TABLE
• TEMPLATE_TABLE
• DOMAIN
• HIERARCHY
• STORED_PROCEDURE
• IDOC
• BW_MASTER_TRANSFER_STRUCTURES
• BW_MASTER_TEXT_TRANSFER_STRUCTURES
• BW_TRANSACTION_TRANSFER_STRUCTURES
• BW_HIERARCHY_TRANSFER

stringobjName

The name of the repository that contains the objects to delete.stringrepoName

The name of the job server associated with the repository. This ele-
ment is optional, but cannot be specified if serverGroup is also
specified.

stringjobServer

The name of the server group associated with the repository. This
element is optional, but cannot be specified if jobServer is also
specified.

stringserverGroup

Enables tracing for the operation. This element is optional.stringtraceOn

Note:

2012-11-2241

Using SAP BusinessObjects Data Services as a web service provider

If you do not specify a serverGroup or jobServer, the operation attempts to find an available job server
that is attached to the repository by first checking the server group list, and then the job server list.

Output message

DescriptionTypeElement

The status of the operation:
• 0 - The operation completed successfully.
• 1 - The operation failed to complete successfully.

intreturnCode

The error message associated with the operation. This element is
output only if the operation fails to complete successfully.

stringerrorMessage

The trace message associated with the operation. This element is
output only if the traceOn element is specified on input.

stringtraceMessage

3.3.6.2 Import_Repo_Object

Use the Import_Repo_Object operation to save an XML object definition to the SAP BusinessObjects
Data Services repository.

2012-11-2242

Using SAP BusinessObjects Data Services as a web service provider

Input message

DescriptionTypeElement

The object to import to the repository. The object must be defined
in XML format.

stringdefinition

The name of the repository in which to import the object.stringrepoName

The name of the job server associated with the repository. This ele-
ment is optional, but cannot be specified if serverGroup is also
specified.

stringjobServer

The name of the server group associated with the repository. This
element is optional, but cannot be specified if jobServer is also
specified.

stringserverGroup

Enables tracing for the operation. This element is optional.stringtraceOn

The passphrase that was used to encode any passwords in the
XML object definition.

Note:
If the passphrase you specify is incorrect, the operation will still save
the XML objects to the repository, but any passwords in the definition
will be removed.

stringpassphrase

Note:
If you do not specify a serverGroup or jobServer, the operation attempts to find an available job server
that is attached to the repository by first checking the server group list, and then the job server list.

Output message

DescriptionTypeElement

The status of the operation:
• 0 - The operation completed successfully.
• 1 - The operation failed to complete successfully.

intreturnCode

The error message associated with the operation. This element is
output only if the operation fails to complete successfully.

stringerrorMessage

The trace message associated with the operation. This element is
output only if the traceOn element is specified on input.

stringtraceMessage

3.3.6.3 Validate_Repo_Object

2012-11-2243

Using SAP BusinessObjects Data Services as a web service provider

Use the Validate_Repo_Object operation to validate an object stored in the SAP BusinessObjects Data
Services repository.

Input message

DescriptionTypeElement

The name of the object to validate.stringobjName

The type of the object to validate:
• BATCH_JOB
• REALTIME_JOB
• WORKFLOW
• DATAFLOW
• ABAP_DATAFLOW
• DATA_QUALITY_TRANSFORM_CONFIGURATION
• CUSTOM_FUNCTION

stringobjType

The name of the repository that contains the object to validate.stringrepoName

The name of the job system profile to use while validating the object.
This element is optional.

stringsystemProfile

The name of the job server associated with the repository. This ele-
ment is optional, but cannot be specified if serverGroup is also
specified.

stringjobServer

The name of the server group associated with the repository. This
element is optional, but cannot be specified if jobServer is also
specified.

stringserverGroup

Substitution parameters to override while validating the object. This
element is optional and contains one or more parameter child ele-
ments.

complexsubstitutionParame-
ters

An individual substitution parameter.stringparameter

Enables tracing for the operation. This element is optional.stringtraceOn

Note:
If you do not specify a serverGroup or jobServer, the operation attempts to find an available job server
that is attached to the repository by first checking the server group list, and then the job server list.

2012-11-2244

Using SAP BusinessObjects Data Services as a web service provider

Output message

DescriptionTypeElement

The status of the operation:
• 0 - The operation completed successfully.
• 1 - The operation failed to complete successfully.

intreturnCode

The error message associated with the operation. This element is
output only if the operation fails to complete successfully.

stringerrorMessage

The trace message associated with the operation. This element is
output only if the traceOn element is specified on input.

stringtraceMessage

3.3.6.4 Export_DQReport

Use the Export_DQReport operation to export reports to a specified location at runtime.

2012-11-2245

Using SAP BusinessObjects Data Services as a web service provider

Input message

DescriptionTypeElement

The unique ID for the batch job run.integerrunID

The name of the repository to that contains the batch job.stringrepoName

Output message

DescriptionTypeElement

The name of the file that is exported; for example, matchcriteri
asummary_Set1.pdf.

stringexportFileName

The path where the reports will be exported to. The default path is
<DS_COMMON_DIR>\DataQuality\reports\. Upon execution,
the repository name and job name folders are appended to the path.
If the Overwrite option is not selected, a run ID folder is also append-
ed to the path.

Note:
If you export reports to a location other than a local drive, such as
a network drive, before you execute the job you must start the web
application server with an account that has access rights to that lo-
cation.

stringexportPath

The status of the overall export operation:
• 0 - The operation completed successfully.
• Negative integer - The operation failed to complete successfully.

booleanexportStatus

Informational messages about the overall export process.stringprocessMessage

The name of the report that is displayed in the Management Console;
for example, Match Criteria Summary.

stringreportName

The status of the export operation for each report:
• 0 - The operation completed successfully.
• Negative integer - The operation failed to complete successfully.

integerreportStatus

Informational message about the export status for each report.stringstatusMessage

3.4 Optimizing real-time web service performance

You can modify the connection pool settings for SAP BusinessObjects Data Services' real-time web
services. You can optimize the performance of your installation by configuring the connection pool to

2012-11-2246

Using SAP BusinessObjects Data Services as a web service provider

match your Access Server and hardware configuration. Connection pool configuration settings are
found in the <DS_COMMON_DIR>/conf/admin.xml file.

DescriptionSetting

Controls the maximum number of connections that can be borrowed from the
pool at one time. When the value is exceeded, the pool is exhausted. Negative
values allow unlimited connections. The default value for this setting is 8.

ws-conn-max-active

Controls the maximum number of connections that can sit idle in the connection
pool at any time. Negative values allow unlimited idle connections. The default
value for this setting is 8.

ws-conn-max-idle

Controls the minimum number of connections that can sit idle in the connection
pool at any time. The default value for this setting is 0.

ws-conn-min-idle

Specifies the action to perform when the connection pool is exhausted. Possible
values include:
• fail

Throws an exception.

• grow

Creates and returns a new connection. This can exceed the maximum
specified in ws-conn-max-active.

• block

Blocks requests until a new or idle connection is available.

ws-conn-when-ex-
hausted-action

Specifies, in milliseconds, how long to block requests when ws-conn-when-
exhausted-action is set to block. Negative values block requests indefinitely.

ws-conn-max-wait

After you modify admin.xml, restart your web application server to activate the new settings.

3.5 Enabling SSL support

3.5.1 To configure SSL on the web application server

For SAP BusinessObjects Data Services web services to work with SSL, the web application server
must be configured to support SSL connections. The server.xml file can be used to configure the
packaged Tomcat application server.

2012-11-2247

Using SAP BusinessObjects Data Services as a web service provider

Note:
For other web application servers, refer to the product documentation about how to configure SSL
support.

1. Open server.xml in a text editor. This file is located in the Tomcat55\conf directory at the same
level as LINK_DIR.

2. Locate the commented connector element in the XML:

<!-- Define a SSL HTTP/1.1 Connector on port 8443 -->
<!--
<Connector port="8443" maxHttpHeaderSize="8192"
maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
enableLookups="false" disableUploadTimeout="true"
acceptCount="100" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS" />
-->

3. Remove the comment (<!-- -->) tags around the connector element.
4. Add the keystoreFile and keystorePath attributes into the connector element.

keystoreFile="path/to/keystore/file"
keystorePass="keystore_password"

5. Restart the Tomcat application server.

3.6 Error reporting

SAP BusinessObjects Data Services uses web services to define every operation with both an input
and output message. In addition to the output message, the software returns a fault message when an
error occurs.

3.6.1 Administrator log

In addition to the fault message, SAP BusinessObjects Data Services writes log and debug messages
to the Administrator's log file (webadmin.log). Fault messages include a short description of a failure.
For detailed information about an error, use the Administrator's log file.

All Administrator components share the Administrator's log. The software prefixes these messages with
the name of the component that issues the error message. For web services, the component name is
the name of the Java class issuing the error. All web service classes start with com.acta.adapter.web
service.

The software creates the Administrator's log file in: <DS_COMMON_DIR>\log\webadmin.log.

2012-11-2248

Using SAP BusinessObjects Data Services as a web service provider

To control the level of detail in the webadmin.log file, you must edit the log4j.properties file.
The properties file is located in:

<LINK_DIR>\ext\webserver\webapps\acta_web_admin\WEB-INF

To obtain a debug trace of events, change the log level from the default of INFO to DEBUG. For example,
log4j.rootLogger=DEBUG, A

3.6.2 Web service log

In addition to the shared Administrator log, web service messages are also written to a separate log
file. The WebService.log file is in <DS_COMMON_DIR>\log.

3.6.3 Error messages

The following are error messages that you might encounter if you are using SAP BusinessObjects Data
Services as a web service provider to accept inbound calls:
• A web service is unable to process a request due to an unknown function in the soapAction element.

The server returns this error message if the soapAction header in the HTTP request is not recognized.
Every web service call expects a soapAction header that indicates an action. The WSDL publishes
a soapAction for each operation. When the web services server cannot determine what action to
take, it is unable to call the software.

To find extended error information, use the WebService.log file in <DS_COMMON_DIR>/log. To
use extended diagnostics, use debug tracing in the webadmin.log file.

• A web service is unable to process a request to call real-time service ServiceName using Access
Server AccessServerName.

The server returns this error message when it recognizes a request to call a real-time service but
is unable to extract the XML message from the SOAP Envelope that is supposed to be sent to the
real-time service. To find extended error information, use the WebService.log file in <DS_COM
MON_DIR>/log.

To use extended diagnostics, use debug tracing in the webadmin.log file.

• A web service sent a request to invoke real-time service ServiceName to Access Server Ac
cessServerName. The request failed with error = <access-server generated error
message>

The server returns this error message if it recognizes a request to call a real-time service, data was
extracted from the incoming SOAP Envelope, and data was passed to the Access Server, which
refused to service the request.

2012-11-2249

Using SAP BusinessObjects Data Services as a web service provider

To locate where the error occurred use the Access Server log file (Real-time > AccessServerName
> Logs - Current).

If the Access Server passed the request on to the Job Server, use the following logs to diagnose
the problem:
• Job Server log (<DS_COMMON_DIR>/log/JobServerName/server_eventlog.txt)
• Real-time service provider log (Real-time > AccessServerName > Real-timeServiceName

> ProcessID)

• A web service operation is unable to process the request to start batch job JobName on server
JobServerName. Error = <web services generated error message>

The server returns this error message if it recognizes a request to start a batch job but is unable get
the information it needs to start the job.

To find extended error information, use the WebService.log file in <DS_COMMON_DIR>/log. To
use extended diagnostics, use debug tracing in the webadmin.log file.

• A web service sent a request to start batch job JobName on server JobServerName. The Job
Server refused the request with error: <job server generated error message>

The server returns this error message if it recognizes a request to start a batch job and has passed
the request to the Job Server to start the job. The Job Server is unable to start the job. To find
extended error information, use the Job Server log (<DS_COMMON_DIR>/log/JobServer
Name/server_eventlog.txt).

Related Topics
• Administrator log

2012-11-2250

Using SAP BusinessObjects Data Services as a web service provider

Consuming external web services in SAP
BusinessObjects Data Services

You can add functionality to SAP BusinessObjects Data Services to invoke web services in external
applications from data flows. This functionality requires configuring the software's built-in web services
datastore type. The web services datastore provides support for locating and importing metadata for a
web services server as well as invoking web service operations.

The web services datastore works by sending a request and waiting until it receives a reply from a web
services server.

For example, you might create a web services server as a front-end to a legacy application. You could
call the web services server daily from a data flow to access inventory and update an inventory data
mart.

The interaction between the web services datastore and an external web service has these parts:
• Creating a web services datastore that identifies the WSDL, which describes the web services server.

• Importing metadata to extract the information form the WSDL needed to access the web service
server.

• Creating a data flow that uses the imported function call to call the web services server.

4.1 To access a web service using the Designer

To configure access to a specific web services, use the Designer to create a web service datastore.
SAP BusinessObjects Data Services provides access to web services as stream-oriented function calls,
which it configures when you import metadata.

When you configure a web service datastore, specify the URL of the web services server for a data
flow to access. It must be the same URL that accepts a web service connection and returns the WSDL.

The datastore connects to the web services server using the URL to locate the definition of published
services.
1. Create a web service datastore.

2012-11-2251

Consuming external web services in SAP BusinessObjects Data Services

DetailsParameter

Choose Web Service.Datastore type

Specify the location of the external web service to accept a connection and
return WSDL.

Web Service URL

Enter the user name for HTTP basic authentication. Required only if basic
authentication is needed to connect to the web service provider.

User name

Enter the password for HTTP basic authentication. Required only if basic
authentication is needed to connect to the web service provider.

Password

Enter the number of passes the software should run through the XSD to
resolve names. The default is 0.

XMLRecursion Lev-
el

If the web service provider uses an SSL connection, specify the location of
the keystore used to establish the connection.

Keystore path

Enter the maximum number of milliseconds the web service client will wait
to receive the response from the web service provider.

Socket timeout

Enter the path to your Axis2/c configuration file (axis2.xml). If a path is
not specified, the default path is <LINK_DIR>/ext/webservice-c/ax
is2.xml.

Axis2/c config file
path

Enter the host name for the HTTP proxy server. Required only if a proxy
server is needed to connect to the web service provider.

Proxy host

Enter the port number for the HTTP proxy server. Required only if a proxy
server is needed to connect to the web service provider.

Proxy port

Enter the user name for the HTTP proxy server. Required only if a proxy
server that uses authentication is needed to connect to the web service
provider.

Proxy username

Enter the password for the HTTP proxy server. Required only if a proxy
server that uses authentication is needed to connect to the web service
provider.

Proxy password

2. Import metadata from the web service datastore
a. From the object library, open the web service datastore.

The Designer calls the web service server at the indicated WSDL URL and obtains a list of the
published services and ports.

b. Expand the ports to see published operations available for import.
c. Right-click an operation and select Import.

The software imports web service operations as function calls and lists them under the web
service datastore in the object library. Each function call includes a definition for both the input
and output messages required for communication with a web service operation. The Designer
extracts the details about the request and reply messages and generates XML Schema that
describes the messages.

3. From the Designer, add a web service function call to a job.

2012-11-2252

Consuming external web services in SAP BusinessObjects Data Services

As a web services client, the software calls a web services server twice:
• During design time to import metadata for the functions and data types that a particular web

service supports.
• During run time to call the web service and invoke its functionality.

For more information, see “Defining a web service datastore” in the Designer Guide.

4.2 To add web service calls to a job

Once a web service datastore is created and metadata is imported, you can add web service function
calls to an SAP BusinessObjects Data Services job.
1. Add a Query transform to the data flow.
2. Open the Query editor, right-click the target schema and select New function call.

The Function Editor opens listing the operation metadata that you imported under the datastore
name.

3. Select a datastore to view the metadata that you want to add to your job.
4. Select the metadata name and click Next.
5. Map the input schema to the output schema.

Note:
If you want to nest data in the target schema, use this first Query transform to place the schema in
your job and additional Query transforms to perform the nesting. The Function Editor does not allow
complex schema configuration.

6. Click OK.
The imported schema appears in the query.

7. Configure the rest of the data flow by supplying input to the function call and extracting the response
information obtained from the web service.

4.3 Configuring HTTP header fields

In the HyperText Transfer Protocol (HTTP), header fields generally contain the operating parameters
of an HTTP request or response. The header fields define various characteristics of the the data transfer
that is requested or the data that is provided in the message body.

An HTTP header field always starts with a field name, then a colon (:), and ends with the field value.
A core set of header fields is standardized by the Internet Engineering Task force. These standard
headers are commonly understood by all compliant protocol implementations. Header field names may
also be any application-specific strings, known as customary headers.

2012-11-2253

Consuming external web services in SAP BusinessObjects Data Services

4.3.1 To configure standard HTTP header fields

Standard HTTP header fields have specified values that are the same and fixed for all web service
functions in the web service datastore. The values for standard fields also remain the same for all web
service calls in a dataflow.
1. In the Designer, open the web service datastore configuration and click Advanced.
2. Select Standard HTTP header fields and click

The "Edit HTTP Header Fields" screen appears.

3. Enter each field name and its corresponding default value and click OK.
A semicolon-separated list of the header fields appears in the column for Standard HTTP header
fields.

4. Click OK to accept the datastore configuration.

4.3.2 To configure dynamic HTTP header fields

Dynamic HTTP header fields have values that may be different for each function in the web service
datastore. The values for dynamic fields can also change for each web service call in a dataflow.
1. In the Designer, open the web service datastore configuration and click Advanced.
2. Select Dynamic HTTP header fields and click

The "Edit HTTP Header Fields" screen appears.

3. Enter each field name and the maximum length for its value and click OK.
A semicolon-separated list of the header fields appears in the column for Dynamic HTTP header
fields.

4. Click OK to accept the datastore configuration.

When you import a function into the web service datastore, the dynamic HTTP headers are available
for mapping in the HTTPHeader schema.

4.4 Enabling SSL support

2012-11-2254

Consuming external web services in SAP BusinessObjects Data Services

4.4.1 To configure SSL on the native web service datastore

To configure SSL support on the native web service datastore, add the path to your keystore to the
datastore configuration.

Note:
The keystore path is only used while importing WSDL operations into the datastore, and is not used at
runtime.

For more information about configuring web service datastores, see the Designer Guide.

4.4.2 To configure SSL in the runtime execution file

1. Obtain a certification authority (CA) certificate for the client.
2. Open LINK_DIR\ext\webservice-c\axis2.xml in a text editor.
3. Locate the commented transportReciever and transportSender elements in the XML:

<transportReceiver name="https" class="axis2_http_receiver">
<parameter name="port" locked="false">6060</parameter>
<parameter name="exposeHeaders" locked="true">false</parameter>

</transportReceiver>

<transportSender name="https" class="axis2_http_sender">
<parameter name="PROTOCOL" locked="false">HTTP/1.1</parameter>

</transportSender>

4. Remove the comment (<!-- -->) tags around the transportReciever and transportSender
elements.

5. Provide the path to the CA certificate as the SERVER_CERT parameter.

<parameter name="SERVER_CERT">/path/to/ca/certificate</parameter>

6. If you need client authentication, additionally provide the private key and keystore passphrase.

<parameter name="KEY_FILE">/path/to/client/certificate/chain/file</parameter>
<parameter name="SSL_PASSPHRASE">passphrase</parameter>

4.5 Enabling WS-Security support

2012-11-2255

Consuming external web services in SAP BusinessObjects Data Services

WS-Security is a communications protocol that applies security to web services at the message level.
The protocol defines how integrity and confidentiality can be enforced on web service messaging, as
well as how to attach signatures and encryption headers to SOAP messages. In addition, it defines
how to attach security tokens such as X.509 certificates or Kerberos tickets to messages.

SAP BusinessObjects Data Services implements WS-Security support through the Apache open source
project rampart/c and can be configured through the web service datastore and an external policy file.

4.5.1 To configure WS-Security on the native web service datastore

1. Create a security policy file (policy.xml) based on the WS-Security policy specification that
satisfies your security requirements.
You can see sample policy files by downloading a copy of rampart/c and opening the sam
ples/secpolicy folder.

2. Place your security policy file in the LINK_DIR/ext/webservice-c folder or another location.
3. If your policy file is not named policy.xml or is located in a folder other than the default location,

specify the path using the WSS Policy file path parameter in the datastore configuration.
4. Enable the rampart/c module in your axis2.xml file.

Within axis2.xml, uncomment the <!-- module ref="rampart" /--> line. By default, ax
is2.xml is installed to LINK_DIR/ext/webservice-c/.

You can also make more changes in the Advanced section of the native web service datastore
configuration:

DetailsParameter

Enter the username to use for WS-Security.WSS Username

Enter the password to use for WS-Security.WSS Password

Enter the password type to use for WS-Security. The available options are
PlainText and Digest.

WSS Password
type

Enter the time for WS-Security protected messages to live. The default is 0. Any
positive number will add a timestamp to the message.

WSS Time to live

Enter the path to your WS-Security policy file. The default path is
LINK_DIR/ext/webservice-c/policy.xml.

WSS Policy file path

For more information about configuring web service datastores, see the Designer Guide.

Related Topics
• WS-Security policy specification

2012-11-2256

Consuming external web services in SAP BusinessObjects Data Services

http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf

Using the Message Client API

You can integrate SAP BusinessObjects Data Services' real-time services by using the C++ or Java
API. Either of these interfaces allows you to connect to the real-time service with a persistent connection
to the server, send and receive data from it, and close the connection.

Note:
The Message Client API supports the creation of reports, similar to any job you run with the software.

In the execution of real-time jobs with real-time services APIs, these steps take place:
1. An administrator logs into the Management Console and chooses which real-time jobs to expose

as real-time services. Those job names are stored in the local repository.
2. An administrator chooses which Access Server to run the services on and starts the real-time

services.
3. A developer accesses a real-time service through Java and C++ libraries.
4. A C++ or Java application client makes a connection to the Access Server, which then sends

information to various job servers.
5. The job servers route requests to an engine to process the real-time job.

File location
The Message Client API files for each supported platform are installed to LINK_DIR\SDK\RTSDK.
When the software is installed on a Windows server, the Message Client API files for both C++ and
Java for each UNIX platform are provided in a .tar.gz archive.

To use the UNIX Message Client API files with a Windows installation, copy the appropriate Message
Client API package file for your UNIX platform from LINK_DIR\SDK\RTSDK\platform to your UNIX
system, and then unzip and extract the archive to the desired installation location. For example, on
Solaris:

gunzip MessageClient_Solaris_64bit.tar.gz
tar -xvf MessageClient_Solaris_64bit.tar

5.1 Interface components

The interface between the Access Server and your application includes these components:
• Connection definition (Connection)

2012-11-2257

Using the Message Client API

A class that defines the connection that your application uses to send and receive messages from
the Access Server. Initialize the class (using the connect method) each time you initialize your
application.

• Connection initialization (Connect)

A method that creates the connection using host and port information supplied by the client.

• Request (Invoke)

A method that indicates the request message for the specified real-time service. This method is a
synchronous call that waits for a return.

• Exception handlers (Error message)

A class that returns exceptions thrown by the connection object and system exceptions, if available.

5.2 Creating the connection

The Connection object creates an active connection to the Access Server.

Creating a Connection (calling the Connect method) does the following:
• Authenticates the client as secure
• Produces an open TCP/IP socket between the client and the Access Server
• Encapsulates the connection information into a client identifier (Connection ID)

As soon as you create the Connection object, you can use it to send messages to the Access Server.
Typically, you would create a single Connection per client. If you attempt to call the Connect method
for a Connection that already exists, the Access Server ignores the call.

5.3 Sending messages

Send requests from the client application using the Invoke method and the Connection ID.

Each business operation implemented by your web application can result in a call to the Access Server
with a message. The Access Server uses the name of the business operation to determine the path
for the message. When you use SAP BusinessObjects Data Services to process real time jobs, you
pair this business operation name, called a service, with the job and data flow names you defined in
the software to process the message. There is a one-to-one correlation between business operation,
service, job, and XML source.

Call the Invoke method with a string return value to process a synchronous response.

2012-11-2258

Using the Message Client API

5.4 Closing the connection

The library provides a method (Disconnect) with the Connection object that allows you to systematically
close the TCP/IP socket between the client and the Access Server.

5.5 Pseudo code example

// Login and authenticate the client connection = connect(accessServerAddress,
// TCP/HTTP address clientName,
// matches Access Server clientPassword);
// IP & Client
// security settings
// Invoke Service String xmlOut = connection.invoke(serviceName,
// has mapping to RT job xmlIn);
// according to the RT job DTD
// In case of an error returns the error code
// and error message

5.6 C++ API reference

5.6.1 Class RTServiceClient

RTServiceClient
Contains C++ methods for allowing a client to connect to real-time services.

Method summary

connect (char* hostname unsigned short port bool use_SSL char*
trusted_certs_filename)virtual void

invoke (char* serviceName char* inData)virtual char*

disconnect ()virtual void

2012-11-2259

Using the Message Client API

Constructor detail
RTServiceClient
RTServiceClient(){}

Method detail
connect
virtual void connect(char* hostname, unsigned short port)

Establishes a connection between a client and the Access Server. You must establish a connection
before a message can be exchanged.

hostname - the name or IP address of the machine that hosts the Access server.

port - the port number used for the connection.

setUseSSL
void setUseSSL(const char* certificate_dir)

Uses SSL when communicating with the Access Server.

certificate_dir - the folder that contains the certificate files. Files with .crt, .pem, and .cer
extensions are used as trusted certificates.

invoke
virtual char* invoke(char* serviceName, char* inData)

Sends the input data to the real-time service and returns the output data.

serviceName - the name of the real-time service to invoke.

inData - the input data to send to the real-time service.

disconnect
virtual void disconnect ()

Stops the connection between a client and the Access Server.

5.6.2 Class RTServiceClientError

RTServiceClientError
Represents an error object thrown by the C++ class RTServiceClient.

2012-11-2260

Using the Message Client API

Method summary

RTServiceClientError(const char*, int=0)

RTServiceClientError(const char*, const char*, const char*)

RTServiceClientError(const RTServiceClientError&)

Method detail
RTServiceClientError
RTServiceClientError(const char*, int=0)

RTServiceClientError(const char*, const char*, const char*)

RTServiceClientError(const RTServiceClientError&)

Represents an error object thrown by the client library.

5.7 Java API reference

5.7.1 Class RTServiceClient

com.businessobjects.rtsclient.RTServiceClient
Contains Java methods for allowing a client a connection to real-time services.

Method Summary

connect (char * machineName int port bool use_SSL char*
trusted_certs_filename) throws RTServiceException-
Throws:

public void

invoke (java.lang.String serviceName java.lang.String inData
) throws RTServiceExceptionThrows:public java.lang.String

disconnect () throws RTServiceExceptionThrows:public void

Method detail
connect
public void connect (java.lang.String machineName, int port, bool use_SSL, char* trusted_certs_filename)
throws RTServiceExceptionThrows:

Establishes a connection between a client and the Access Server. You must establish a connection
before a message can be exchanged.

2012-11-2261

Using the Message Client API

machineName - the name or IP address of the machine that hosts the Access Server.

port - the port number used for the connection.

use_SSL - indicates that SSL should be used for the connection to the Access Server.

trusted_certs_filename - the path to the file that contains the trusted SSL certificates.

invoke
public java.lang.String invoke(java.lang.String serviceName, java.lang.String inData) throws RTServiceExcep
tionThrows:

Sends the input data to the real-time service and returns the output data.

serviceName - the name of the real time service to invoke.

inData - the input data to send to the real time service.

disconnect
public void disconnect ()throws RTServiceExceptionThrows:

Stops the connection between a client and SAP BusinessObjects Data Services.

2012-11-2262

Using the Message Client API

Using the JMS adapter

6.1 Introduction

6.1.1 About this section

This section provides a detailed step-by-step method of installing and configuring the SAP
BusinessObjects Data Services JMS adapter. It includes a description of required support software,
including supported versions, details of the adapter components, environment setup both for the software
and external applications, and instructions for executing the adapter.

6.1.1.1 Who should read this section?

This section assumes the following:
• You understand how to use Designer to design and run real-time data flows (RTDFs) and batch

jobs.
• You have a basic understanding of how to use Administrator to administer SAP BusinessObjects

Data Services processes. (You administer adapters from the Administrator.)
• You have a working knowledge of the environment this adapter is targeting.
• You know the role an adapter plays in business systems integration.
• You have some familiarity with XML and XML configuration schemas.
• Also, to integrate the software with an external system, it's recommended that you be familiar with

systems administration and systems integration issues.

General SAP BusinessObjects Data Services product documentation assumes the following:
• You are an application developer, consultant or database administrator working on data extraction,

data warehousing, or data integration.
• You understand your source and target data systems, DBMS, legacy systems, business intelligence,

and messaging concepts.
• You understand your organization's data needs.

2012-11-2263

Using the JMS adapter

• If you are interested in using this product to design real-time processing you are familiar with:
• DTD and XML Schema formats for XML files
• Publishing Web Services (WSDL, HTTP/S and SOAP protocols, etc.)

• You are familiar with the software's installation environments: Microsoft Windows or UNIX.

6.1.2 Adapter overview

Typical enterprise infrastructure is a complex mix of off-the-shelf and custom applications, databases,
ERP applications etc. SAP BusinessObjects Data Services combines and extends critical Extraction
Transformation Loading (ETL) and Enterprise Application Integration (EAI) technology components
required for true enterprise data integration.

Integrating disparate applications with the software's platform requires adapters. These adapters help
facilitate otherwise incompatible applications and systems work together, thereby sharing data.

6.1.2.1 About Java Messaging Service (JMS)

Enterprise-messaging or Message Oriented Middleware (MOM) products are fast becoming an essential
component for integrating intra-company operations. They allow separate business components to be
combined into a reliable, yet flexible, system. In addition to the traditional MOM vendors, several
database vendors and Internet-related companies also provide enterprise-messaging products.

Java language clients and Java language middle-tier services must be capable of using these messaging
systems. Java Messaging Service (JMS) provides a common way for Java language programs to access
these systems.

JMS is a set of interfaces and associated semantics that define how a JMS client accesses the facilities
of an enterprise-messaging product. Since messaging is peer-to-peer, all users of JMS are generically
referred to as clients. A JMS application is composed of a set of application-defined messages and a
set of clients that exchange them. Products that implement JMS do this by supplying a provider that
implements the JMS interfaces.

6.1.2.2 Scope of the JMS adapter

• SAP BusinessObjects Data Services initiates Request/Reply

The software initiates the request by sending the message on a pre-configured request queue and
gets the reply on a pre-configured reply queue.

2012-11-2264

Using the JMS adapter

• The software initiates Request/Acknowledgment

The software initiates the request by sending the message on a pre-configured target queue or by
publishing a message to a JMS topic. In this case, only the acknowledgment is sent back to the
software.

• IR initiates Request/Acknowledgment & Request/Reply

In this case, an external Information Resource (IR is a JMS compatible application) sends the
requests to the software and gets the reply or acknowledgment.

Alternatively, the IR publishes a message to a JMS topic to which the JMS adapter has subscribed.

6.2 Installation and configuration

6.2.1 JMS adapter installation

This section details the components of the Adapter for JMS as well as system requirements.

The Adapter for JMS is automatically installed when you install SAP BusinessObjects Data Services
version 12.0.0 or later.

6.2.1.1 System prerequisites

Before you install your SAP BusinessObjects Data Services Adapter for JMS, ensure that the following
software is installed. For specific installation instructions, see the technical documentation for each
product.

2012-11-2265

Using the JMS adapter

CommentVersionSoftware

For example, Weblogic Application ServerJMS Provider

Use the software to configure the services
and adapter

11.7.0 or laterSAP BusinessObjects Data Services

2.0.0.0 or laterSAP BusinessObjects Data Services
Adapter SDK

6.2.1.2 Adapter product components

The following diagram shows a functional overview of the SAP BusinessObjects Data Services Adapter
for JMS with other components and their potential interrelationships:

The diagram shows the architecture and functionality of the SAP BusinessObjects Data Services Adapter
for JMS as well as how the adapter interacts with the external JMS application through the JMS Provider.
The adapter sends or receives data on queues using the Point to Point (P2P) mode of communication,
or publishes or subscribes to a JMS topic using the Publish/Subscribe mode of communication.

The flow of control in the previous diagram is as follows:

2012-11-2266

Using the JMS adapter

1. External application invokes a service on the software.
2. Based on the service invoked on the software, its respective real-time data flow (RTDF) invokes the

Operation instance with XML data sent by the external application as input.
3. This operation instance sends the message to the configured queue or topic in the JMS provider.

Based on the type of operation (such as Request/Reply or Request/Acknowledge), the JMS provider
sends the Reply/Acknowledgment message back to the software.

4. External JMS application sends messages to the JMS Provider on a request queue or publishes
the message to a topic. The JMS Adapter receives these messages after polling them from the JMS
Provider and for P2P, sends the reply back to external JMS application on a configured reply queue.
No reply is sent if the message was from a topic.

6.2.2 JMS adapter configuration

Before the Adapter for JMS can begin integrating the JMS Provider with the SAP BusinessObjects Data
Services system you must create and configure at least one adapter instance and at least one operation
for each instance. Adapter instances identify the JMS Application used in the integration. Adapter
operations identify the integration operations to be used with the configured adapter instance.

Operations provided with Adapter for JMS include the following:
• PutGet Operation (Request/Reply): The software initiates a request, sending a message on a

pre-configured request queue. Simultaneously, the software listens on a pre-configured reply queue.
An external JMS-compatible application listens on the request queue, processes the request, and
returns an XML response message to the reply queue. The adapter sends the message to the Job
service.

• Put Operation (Request/Acknowledgment): The software initiates a request, sending a message on
a pre-configured target queue. If the message was sent successfully, the adapter sends an
acknowledgement to the Job service. The adapter raises an exception if it was unable to send the
message.

• Get Operation (Request/Acknowledgment and Request/Reply from Information Resource): An
external information resource (IR) sends a request XML message to a JMS queue. The adapter
polls the JMS queue at a time interval you specify in the configuration. When the adapter receives
a message from the JMS queue, it sends the message to the pre-configured Job service.

After processing the XML message, the Job service may send a response message to the adapter.
When this happens, the adapter puts the message in a pre-configured response queue. If the
response queue is not configured, it becomes a request/acknowledgment operation and no reply is
sent. If there is any error in invoking another service from the Job service, the original message is
sent to the undelivered queue for reference by the IR.

• PutTopic Operation (Request/Acknowledgment): A software service initiates a request, publishing
an XML message to a pre-configured target topic. If the message was sent successfully, the adapter
sends an acknowledgement to the Job service. The adapter raises an exception if it was unable to
send the message.

• GetTopic Operation (Request/Acknowledgment): An external information resource (IR) publishes
an XML message to a JMS topic. The adapter polls the topic at the time intervals specified in the

2012-11-2267

Using the JMS adapter

configuration. When the adapter receives the message from the topic, it sends the message to the
service that handles the message.

6.2.2.1 To configure the JMS adapter

All SAP BusinessObjects Data Services adapters communicate with the software through a designated
Adapter Manager Job Server. Install adapters on the computer containing your designated Adapter
Manager Job Server. This special Job Server integrates adapters with the software using the
Administrator and Designer. After you install your adapter:
1. Use the Server Manager utility to configure adapter connections with the Adapter Manager Job

Server.
2. From the Administrator, perform the following tasks:

• Add at least one instance of the adapter to system.
• Add at least one operation for each adapter instance.
• Start the adapter instance (operations are started automatically).

3. Open the Designer and create an adapter datastore. Use metadata accessed through the adapter
to create batch and/or real-time jobs.

For more information, see “To configure Job Servers” in the Installation Guide and “Adapter
Considerations” in the Management Console Guide.

6.2.2.2 To configure an adapter instance in the Administrator

From the Administrator you can add a JMS adapter to the SAP BusinessObjects Data Services system
as well as edit existing adapter configurations. Add the adapter in the Administrator before you run jobs
that use information from that adapter.
1. Select Adapter Instances > Job Server.
2. Select the Configuration tab.
3. Click Add.
4. Select JMSAdapter from the list of adapters available on this Job Server and click Apply.
5. Enter the required information to create a JMS Adapter instance and click Apply.

The Administrator makes the adapter instance available to the software.

6.2.2.2.1 Adapter instance configuration information

To configure a JMS adapter instance in SAP BusinessObjects Data Services, you need to complete
the fields in the Administrator under Adapter instance startup configuration.

2012-11-2268

Using the JMS adapter

DescriptionField

Enter a unique name that identifies this instance of the adapter.Adapter Instance
Name

Enter the host ID of the computer running the Access Server that connects
to this adapter instance. To run a real-time job, you must configure a service
that the Access Server will use to run the job. When a job uses adapter-based
data, the Access Server must be able to connect to the adapter instance.

Access Server Host

The message broker port of the Access Server host. After you log into the
Administrator for this Access Server, selectConfiguration >Client Interfaces
to view message broker port information.

Access Server Port

Applies if adapter instance fails or crashes. Enter 0 for no retries; enter a
negative number for indefinite retries.

Adapter Retry Count

Wait in msec. between adapter retry attempts.Adapter Retry Interval

The adapter is a Java program, so you must configure the jar files required
by the adapter CLASSPATH. The adapter is pre-configured with all necessary
jar files except for the vendor-specific JMS provider jar files. Add your JMS
provider's jar files to the CLASSPATH. For example:
• <LINK_DIR>/lib/acta_adapter_sdk.jar
• <LINK_DIR>/lib/acta_broker_client.jar
• <LINK_DIR>/lib/acta_tool.jar
• <LINK_DIR>/ext/lib/xerces.jar
• <LINK_DIR>/lib/acta_jms_adapter.jar
• <LINK_DIR>/ext/lib/jms/<JMS Provider Jar File>

Note:
Specify the jar file provided with the JMS provider that you are using. For
Weblogic, the name of jar file is weblogic.jar.

Classpath

When set to True, the adapter interface automatically starts when the Admin-
istrator starts.

Autostart

Set this flag to control the number of trace messages the adapter produces.
There are two settings:
• True: The adapter interface writes information and error messages to help

debug problems. The adapter writes information and error messages to
the adapter_instance_name_trace.txt file in the <DS_COM
MON_DIR>\adapters\logs directory.

• False: The adapter interface writes only error information messages. The
adapter writes error messages to the adapter_instance_name_er
ror.txt file in the <DS_COMMON_DIR>\adapters\logs directory.

Trace Mode

Additional command line parameters used for the javaw.exe command line
and for the adapter itself. (See specific adapter documentation for details.)

Additional Java
Launcher Options

2012-11-2269

Using the JMS adapter

DescriptionField

(Read-only) Name of the adapter used to create this instance.Adapter Type Name

(Read-only) Version of the adapter used to create this instance.Adapter Version

(Read-only) Name that identifies the adapter class. The name depends on
the type of adapter.

Adapter Class

In the JMS Adapter section, select a Configuration Type and enter Configuration parameters.

DescriptionParameter

Uses only the configuration parameters associated with the selected configuration
type.
• JNDI configuration type
• MQ configuration type

Configuration
Type

For the JNDI configuration type, use the following configuration parameters.

DescriptionParameter

Represents the URL of the JMS Provider. For example: t3://<JMS
Provider IP Address>:<port number>.

Server URL

JNDI context factory name is JMS Provider specific. You can choose the
context factory from a list that includes common context factories. If you require
a context factory that is not listed, you can add it to the list by editing file
<DS_COMMON_DIR>/adapters/config/templates/JMSAdapter.xml
and updating the <jndiFactory> element. For Weblogic as a JMS Provider,
the JNDI Factory name is: weblogic.jndi.WLInitialContextFactory.

JNDIContext Factory

Queue connection factory name. For example: JMSConnections.Adapter
ConnectionFactory.

Queue Connection
Factory

Topic connection factory name. For example: JMSConnections.Adapter
TopicConnectionFactory.

Topic Connection
Factory

For the MQ configuration type, use the following configuration parameters.

2012-11-2270

Using the JMS adapter

DescriptionParameter

(Optional) Specify if not using the default MQ Queue Manager on the system
running MQ.

MQ Queue Manag-
er Name

(Optional) Specify if not using the default MQ Channel on the system running
the adapter.

MQ Channel Name

(Optional) Specify if not using the MQ Queue Manager on the same system
running the adapter.

MQ Computer
Name

(Optional) Specify if not using the default MQ port (1414).MQ Port

(Optional) Specify if required to login to the MQ Queue Manager.MQ User ID

(Optional) Specify if required to login to the MQ Queue Manager.MQ Password

6.2.2.3 To add an operation instance to an adapter instance

1. Select Configuration > Adapter instances.
2. Click Operations under Dependent Objects.
3. Click Add to configure a new operation. Or, you can click the link of an existing operation instance

to edit its configuration.
4. Select an operation type from the list and click Apply. The options that appear on this page vary

based on operation-specific design.

Complete the operation instance configuration form and click Apply.

6.2.2.3.1 Operation instance configuration options

Each operation type contains different configuration options. Operations include:
• Put Operation (request/acknowledgment) options
• PutTopic Operation (request/acknowledgment) options
• PutGet Operation (request/reply) options
• Get Operation (request/reply and request/acknowledgment) options
• GetTopic Operation (request/acknowledgment only) options

Note:
When specifying a queue or topic, you must provide the JNDI queue name or the MQ queue name as
indicated by the Adapter Configuration Type property.

Put Operation (request/acknowledgement) options

To set up an operation instance of type Put Operation in SAP BusinessObjects Data Services, complete
the following fields in the Administrator.

2012-11-2271

Using the JMS adapter

DescriptionFIeld

The unique operation instance name. In the Designer, your operation metadata
object is imported with this name.

Operation instance

The number of copies of Request/Reply operation to run in parallel. For parallel
(asynchronous) processing of messages coming from real-time service, more
than one copy should be used. But if the sequence of messages is important
(synchronous processing), more than one thread should not be used. (Multiple
copies of real-time services must be supported by multiple instances of Re-
quest/Reply.) The default is 1.

Thread count

The number of times to retry this operation if it fails. Enter 0 to indicate no retries
are to be attempted. Enter a negative number to indicate the operation should
be retried indefinitely.

Operation retry
count

The time (in milliseconds) to wait between operation retry attempts.Operation retry inter-
val

The display name of the operation instance. This display name is visible in the
Designer's metadata browsing window.

Display name

The description of the operation instance. This description is visible in the
Designer's metadata browsing window.

Description

Whether to enable the operation to start at the same time as the adapter in-
stance. Valid values are true and false.
• When true, the operation starts when the adapter instance starts.
• When false, the operation needs to be started manually from "Adapter

Operations Status" window of the adapter administrator.

Enable

The name of the destination queue where the message will be sent.Destination Queue

The DTD or XSD file name that defines the XML message used in the opera-
tion.

Request Format

The name of the XML root element.Request XML Root
Element

PutTopic Operation (request/acknowledgement) options

To set up an operation instance of type PutTopic in the SAP BusinessObjects Data Services, complete
the following fields in the Administrator.

2012-11-2272

Using the JMS adapter

DescriptionField

The unique operation instance name. In the Designer, your operation metadata
object is imported with this name.

Operation instance

The number of copies of Request/Reply operation to run in parallel. For parallel
(asynchronous) processing of messages coming from real-time service, more
than one copy should be used. But if the sequence of messages is important
(synchronous processing), more than one thread should not be used. (Multiple
copies of real-time services must be supported by multiple instances of Re-
quest/Reply.) The default is 1.

Thread count

The number of times to retry this operation if it fails. Enter 0 to indicate no retries
are to be attempted. Enter a negative number to indicate the operation should
be retried indefinitely.

Operation retry
count

The time (in milliseconds) to wait between operation retry attempts.Operation retry inter-
val

The display name of the operation instance. This display name is visible in the
Designer's metadata browsing window.

Display name

The description of the operation instance. This description is visible in the
Designer's metadata browsing window.

Description

Whether to enable the operation to start at the same time as the adapter in-
stance. Valid values are true and false.
• When true, the operation starts when the adapter instance starts.
• When false, the operation needs to be started manually from "Adapter

Operations Status" window of the adapter administrator.

Enable

The topic to which the operation is published. Use JNDI or MQ name as
specified by Adapter Configuration Type.

Destination Topic

The DTD or XSD file name defining the XML message used in this operation.Message Format

The name of the XML root element.Request XML Root
Element

Whether to make published messages available to durable subscribers. Valid
values are true and false. When true, published messages are available to
durable subscribers.

Persistent Message

PutGet Operation (request/reply) options

To set up an operation instance of type PutGet Operation in SAP BusinessObjects Data Services,
complete the following fields in the Administrator.

2012-11-2273

Using the JMS adapter

DescriptionField

The unique operation instance name. In the Designer, your operation metadata
object is imported with this name.

Operation instance

The number of copies of Request/Reply operation to run in parallel. For parallel
(asynchronous) processing of messages coming from real-time service, more
than one copy is used. If the sequence of messages is important (synchronous
processing), more than one thread should not be used. (Multiple copies of real-
time services must be supported by multiple instances of Request/Reply.) The
default is 1.

Thread count

The number of times to retry this operation if it fails. Enter 0 to indicate no retries
are to be attempted. Enter a negative number to indicate the operation should
be retried indefinitely.

Operation retry
count

The amount of time (in milliseconds) to wait between operation retry attempts.Operation retry inter-
val

The display name of the operation instance. This display name is visible in the
Designer's metadata browsing window.

Display name

The description of the operation instance. This description is visible in the
Designer's metadata browsing window.

Description

Whether to enable the operation to start at the same time as the adapter in-
stance. Valid values are true and false.
• When true, the operation starts when the adapter instance starts.
• When false, the operation needs to be started manually from "Adapter

Operations Status" window of the adapter administrator.

Enable

The name of the destination queue where the message will be sent.Request Queue

The name of the destination queue where the message will be sent.Reply Queue

The maximum time (in milliseconds) the operation should wait for the reply
message.

Timeout

Whether to continue after encountering an error. Valid values are true and
false.
• When true, the operation instance remains in start stage even after the error.
• When false, the operation instance stops after the error occurs during the

process.

Continue After Error

The DTD or XSD file name that defines the Request XML message used in
this operation.

Request Format

2012-11-2274

Using the JMS adapter

DescriptionField

The name of the XML root element in the Request DTD or XSD.Request XML Root
Element

The DTD or XSD file name that defines the Reply XML message used in the
operation.

Reply Format

The name of the XML root element in the Reply DTD or XSD.Reply XML Root Ele-
ment

Get Operation (request/reply and request/acknowledgement) options

To set up an operation instance of type Get Operation in SAP BusinessObjects Data Services, complete
the following fields in the Administrator.

DescriptionField

The unique operation instance name. In the Designer, your operation metadata
object is imported with this name.

Operation instance

The time interval (in milliseconds) for polling the source queue by this operation
instance. For example, If the polling interval is 1000, then it polls the source
queue after every one second.

Polling interval

The number of times to retry this operation if it fails. Enter 0 to indicate no retries
are to be attempted. Enter a negative number to indicate the operation should
be retried indefinitely.

Operation retry
count

The time (in milliseconds) to wait between operation retry attempts.Operation retry inter-
val

Whether to enable the operation to start at the same time as the adapter in-
stance. Valid values are true and false.
• When true, the operation starts when the adapter instance starts.
• When false, the operation needs to be started manually from "Adapter

Operations Status" window of the adapter administrator.

Enable

The name of the queue where the message is sent by the IR and received by
the adapter. Use JNDI or MQ name as specified by the Adapter Configuration
Type.

Source Queue

The name of the real-time service invoked by the operation when it receives
a new message from the Source Queue.

Service

The maximum time (in milliseconds) that the Service takes to process a mes-
sage. If the operation instance is unable to invoke the service within the
Timeout limit, it sends the error message to the undelivered queue.

Timeout

2012-11-2275

Using the JMS adapter

DescriptionField

Whether to continue after encountering an error. Valid values are true and
false.
• When true, the operation instance remains in start stage even after the error.
• When false, the operation instance stops after the error occurs during the

process.

Continue After Error

[optional]: Used only for Request/Reply operation. In case of Request/Acknowl-
edgment operation, it remains blank. The application sends the reply back to
external JMS application (IR) on this queue. Use JNDI or MQ name as specified
by the Adapter Configuration Type.

Default Response
Queue

[optional]: The undelivered queue for receiving the error messages, if any.
Use JNDI or MQ name as specified by the Adapter Configuration Type.

Undelivered Queue

The name of the root element for the input DTD for this operation.Request DTD Root
Element

GetTopic Operation (request/acknowledgement only) options

To set up an operation instance of type GetTopic in SAP BusinessObjects Data Services, complete the
following fields in the Administrator.

DescriptionField

The unique operation instance name. In the Designer, your operation metadata
object is imported with this name.

Operation in-
stance

The time interval (in milliseconds) for polling the source topic by this operation
instance. For example, if the polling interval is 1000, then it polls the source
topic after every one second.

Polling interval

The number of times to retry this operation if it fails. Enter 0 to indicate no retries
are to be attempted. Enter a negative number to indicate the operation should
be retried indefinitely.

Operation retry
count

The time (in milliseconds) to wait between operation retry attempts.Operation retry in-
terval

Whether to enable the operation to start at the same time as the adapter instance.
Valid values are true and false.
• When true, the operation starts when the adapter instance starts.
• When false, the operation needs to be started manually from "Adapter Oper-

ations Status" window of the adapter administrator.

Enable

The topic to which the operation subscribes. Use JNDI or MQ name as specified
by Adapter Configuration Type.

Source Topic

2012-11-2276

Using the JMS adapter

DescriptionField

The subscription name of Durable subscriber. If not applicable, leave this field
blank.

Durable sub-
scriber

The name of the real-time service invoked by the operation when it receives a
new message from the source topic.

Service

The maximum time (in milliseconds) that the service takes to process a message.Timeout

Whether to continue after encountering an error. Valid values are true and false.
• When true, the operation instance remains in start stage even after the error.
• When false, the operation instance stops after the error occurs during the

process.

Continue After Er-
ror

6.2.2.4 Defining a JMS adapter datastore

Use the SAP BusinessObjects Data Services Adapter for JMS with a batch job or real-time data flow
(RTDF) when the batch job or RTDF passes a message to an operation instance, using either:
• An Outbound message (for Request/Acknowledge operations)

• A Message Function (for Request/Reply operations)

You must first define an adapter datastore in the Designer. Then, the batch job or RTDF can pass a
message to one of the adapter operation instances defined in that datastore. To define an adapter, you
must:
• Define a datastore object for each adapter instance

• Define one function or one outbound message for each operation instance to which you want to
pass a message.

For each adapter instance, define a corresponding datastore object in the Datastore Editor window of
the Designer object library.

6.2.2.4.1 To define a JMS adapter datastore
1. From the Datastore Editor:

a. Select the Job Server configured to manage your JMS adapter.
b. Select the Adapter instance name you configured in the Administrator.

2. Select the Adapter Properties tab and enter values for each property.
3. Click OK to save values and create the datastore.

2012-11-2277

Using the JMS adapter

6.2.2.5 Importing message functions and outbound messages to the datastore

You can pass messages from a batch job or RTDF to an operation instance. Import either a function
or an outbound message (depends on the type of operation involved) in the Designer Datastore library
for each operation instance.

Real-time data flows use following methods.

DescriptionMethod

Pass messages to an operation instance if the RTDF waits for a return XML
message from the IR.

Message functions

Outbound messages Pass messages to an operation instance if the RTDF waits
for a confirmation only (not a return XML message) from the IR.

Outbound mes-
sages

Operation types in the SAP BusinessObjects Data Services Adapter for JMS have the following invocation
types.

Invocation typeOperation type

Message FunctionRequest/Reply Operation

Outbound MessageRequest/Acknowledge Operation

6.2.2.5.1 To import message functions and outbound messages
1. In Designer, double-click the datastore associated with your JMS Adapter Instance to display the

Adapter metadata browser window.
2. Right-click the operation instance to be imported and select Import.

The selected operation instance is added to the datastore.

These message functions and outbound message functions can be used for creating Batch Jobs or
RTDFs in SAP BusinessObjects Data Services.

6.3 Using the JMS adapter

2012-11-2278

Using the JMS adapter

6.3.1 To start an instance of the JMS adapter

1. From the Administrator go to Adapter Instance > Job Server and select the Status tab.
2. Select the check-box next to the previously configured adapter instance.
3. Click Start.

When the adapter instance and its operations start, the message “Started” appears in the Status column.

6.3.1.1 Operations from SAP BusinessObjects Data Services to the JMS adapter

6.3.1.1.1 Request/Reply - PutGet operation

SAP BusinessObjects Data Services initiates the request by sending a message on a pre-configured
request queue. Simultaneously, the software also listens on a pre-configured reply queue. An external
JMS-compatible application listening on this request queue, after processing, sends back the response
on response queue. This response, in the form of the reply XML message, is returned back to the
software.

Related Topics
• Testing PutGet: Request/Reply

6.3.1.1.2 Request/Acknowledge - Put operation

SAP BusinessObjects Data Services initiates the request by sending the message on a pre-configured
target queue.

Related Topics
• Testing Put: Request/Acknowledge

6.3.1.1.3 Request/Acknowledge - PutTopic operation

SAP BusinessObjects Data Services initiates the request by publishing the message to a pre-configured
target topic.

Related Topics
• Testing PutTopic: Request/Acknowledge

2012-11-2279

Using the JMS adapter

6.3.1.2 Operations from Information Resource (IR) to Data Services

6.3.1.2.1 Request/Reply - Get operation

IR initiates the request by putting a message in the source queue of the Get operation. The Get operation
receives the message from the source queue during a polling cycle and sends the message to the
configured Job service. The service sends a reply message to the Get operation, which then puts the
message in the response queue. The IR then gets the message from the response queue.

Related Topics
• Testing Get: Request/Reply

6.3.1.2.2 Request/Acknowledge - Get operation

IR initiates the request by putting a message in the source queue of the Get operation. The Get operation
receives the message from the source queue during a polling cycle and sends the message to the
configured Job service.

Related Topics
• Testing Get: Request/Acknowledge

6.3.1.2.3 Request/Acknowledge - GetTopic operation

IR initiates the request by publishing a message to the source topic of the GetTopic operation. The
GetTopic operation receives the message from the source queue during a polling cycle and sends the
message to the configured Job service.

Related Topics
• Testing GetTopic: Request/Acknowledge

6.3.2 To run the sample

This section details the JMS adapter operations.
1. Import the JMSAdapter.atl file into the Designer. Find the .atl file in <DS_COM

MON_DIR>/adapters/jms/samples. The imported project name is Acta_JMSAdapter_Sample.

2012-11-2280

Using the JMS adapter

2. Change the input and output XML files path for all the batch jobs depending on your location of your
<DS_COMMON_DIR> environment variable.

3. Use the Administrator Real-Time Services Configuration tab to create the service Queue.TestService
referencing job TestService_Job and Topic.TestService referencing job TestServiceTopic_Job.

4. Open Web Administrator and configure a JMS adapter. Define the operations detailed in the following
tests.

5. Use the Designer to edit the JMSAdapter datastore and rename it to the name of the adapter you
just created.

Before running the sample, create the following queues and topic using your JMS provider utilities:
• Queue.MyQueue
• Queue.ActaQueuePutGet
• Queue.ActaQueuePutGet1
• Queue.ActaQueueGet
• Queue.ActaReplyQueueGet
• Queue.ActaUndeliveredQueue
• Topic.MyTopic

Note:
The JMSAdapterTest.properties file and the scripts to execute the samples are located in the
<DS_COMMON_DIR>/adapters/jms/samples directory.

The JMSAdapterTest.properties file TopicConnectionFactoryName property value is Tcf
and the QueueConnectionFactoryName property value is Qcf. You must edit this file and change
the property values if the adapter was configured using different factory names.

The JMSAdapterTest.properties file MessageSource property refers to the file <DS_COM
MON_DIR>/adapters/jms/samples/xml/JMSSource.xml. You must edit this file and change the
property value if this is not where your JMSSource.xml file is located.

You must edit setTestEnv.bat on Windows or setTestEnv.sh on UNIX to set the JMS Provider
jar files in the class path used by the sample test programs.

6.3.2.1 Configuring the JMS provider

Create a JMS Server, Connection Factory and configure JMS queues to run SAP BusinessObjects
Data Services Adapter for JMS. For testing the adapter, using sample applications, configure the
following queues and topic:
• Queue.MyQueue
• Queue.ActaQueuePutGet
• Queue.ActaQueuePutGet1
• Queue.ActaQueueGet
• Queue.ActaReplyQueueGet
• Queue.ActaUndeliveredQueue

2012-11-2281

Using the JMS adapter

• Topic.MyTopic

Refer to the “Appendix” section for instructions on using Weblogic as the JMS Provider. Steps for JMS
Provider may differ from the example provided in this section.

6.3.2.2 To use MQ instead of JNDI configuration

The properties file used by the samples, JMSAdapterTest.properties, is set up to use the JNDI
configuration. You can edit this file to use MQ configuration parameters.
1. Open the JMSAdapterTest.properties file.
2. Set ConfigType = MQ.
3. Set any of the following properties as required by your system:

• MqQueueManager
• MqChannel
• MqComputerName
• MqPort
• MqUserID
• MqPassword

4. For the queue and topic names, use MQ names instead of the JNDI names for the following properties:
• TopicGetName
• TopicPutName
• QueueSourceGetName
• QueueResponseGetName
• QueuePutName
• QueueRequestPutGetName
• QueueReplyPutGetName

6.3.3 Testing PutGet: Request/Reply

To configure the operation type PutGet (Request/Reply), enter the following information in the operation
instance configuration page in Administrator.

2012-11-2282

Using the JMS adapter

ValueOption

JMSPutGetOperationOperation instance

1Thread count

JMSPutGetOperationDisplay name

This operation instance represents the PutGet Request/Reply operation. It
sends the request message to the request queue and receives the reply mes-
sage from the reply queue.

Description

trueEnable

Queue.ActaQueuePutGetRequest queue

Queue.ActaQueuePutGet1Reply queue

200000Timeout

trueContinue after error

<DS_COMMON_DIR>/adapters/JMS/samples/dtd/JMSPUT
GET_SOURCE.dtd

Request format

sourceRequest XML root el-
ement

<DS_COMMON_DIR>/adapters/JMS/samples/dtd/JMSPUTGET_RE
SPONSE1.dtd

Reply format

sourceReply XML root ele-
ment

After entering this information, clickApply and restart the JMS Adapter instance. When the JMS Adapter
starts running, the operation instance also starts running.

Testing on Windows
Open a command prompt window and change directory to <DS_COMMON_DIR>\adapters\jms\sam
ples. Run the sample application (external IR) by running sampleTest_PutGet.bat. The application
displays the message:

Ready to receive message from queue Queue.ActaQueuePutGet

Execute the batch Job JMSPutGetOperation_BatchJob from the Designer. This sends the message to
the request queue.

The sample application (external IR) listens for a message to arrive at the request queue of the
JMSPutGetOperation instance. When it receives the message, it prints a message to the command
prompt window such as:

Message received: <?xml version="1.0" encoding="UTF-8"?> <!-- BusinessObjects Data Services generated XML
--> <!-- 2005-05-05.16:41:57(539,223)[1] --> <source> <age>18</age> <salary>200000000</salary> <ac
no>2356376438743</acno> </source>

2012-11-2283

Using the JMS adapter

The sample test program then sends a reply message to the reply queue configured for the
JMSPutGetOperation instance. It echoes a message to the command prompt window such as:

Message sent: <?xml version="1.0" encoding="UTF-8"?> <source> <age>ReplyFromJMSIR1</age> <salary>Re
plyFromJMSIR2</salary> <acno>ReplyFromJMSIR3</acno> </source>

After the adapter operation receives the reply from the reply queue, it sends the message to the job
which then generates the output file JMSSourceOutput_PutGet.xml under the directory <DS_COM
MON_DIR>/adapters/JMS/samples/xml. The contents of the file should be similar to the message
sent from the sample test with the addition of a timestamp and error information.

Testing on UNIX
Run the sample application (external IR) by running sampleTest_PutGet.sh file from the command
prompt.

Execute the batch Job JMSPutGetOperation_BatchJob from Designer. This sends the message at the
request queue.

Sample application (external IR) listens for the message at the request queue of JMSPutGetOperation
instance and sends the message to the reply queue configured for the JMSPutGetOperation instance.
After receiving the reply from the reply queue an output file JMSSourceOutput_PutGet.xml is
generated under the directory <DS_COMMON_DIR>/adapters/JMS/samples/xml.

6.3.4 Testing PutTopic: Request/Acknowledge

To configure the operation type Put topic (Request/Acknowledge), enter the following information in
the operation instance configuration page in the Web Administrator.

ValueOption

JMSPutTopicOperationOperation instance

1Thread count

5Operation retry count

15000Operation retry interval

JMSPutTopicOperation Display NameDisplay name

JMSPutTopicOperation Display NameDescription

trueEnable

TopicDestination queue

2012-11-2284

Using the JMS adapter

ValueOption

C:\ProgramFiles\Business Objects\BusinessObjects Data
Services

Message format

sourceRequest XML root element

truePersistent message

After entering this information, click Apply and restart JMS Adapter instance. When the JMS Adapter
starts running, the operation instance also starts running.

Add the testing sections:

Testing on Windows
Open a command prompt window and change directory to <DS_COMMON_DIR>\adapters\jms\sam
ples. Run the sample application (external IR) by running sampleTest_PutTopic.bat. The
application should display the message:

Ready to receive message from topic Topic.MyTopic

If you do not see this message, then start the JMS publish/subscribe broker. The message should
appear after you start the broker.

Execute the batch Job JMSPutTopicOperation_BatchJob from the Designer.

The sample application (external IR) listens for a message to be published by the JMSPutTopicOperation
instance. When it receives the message, it will print a message to the command prompt window such
as:

Received message: <?xml version="1.0" encoding="UTF-8"?> <source> <age>18</age> <salary>200000000</salary>
<acno>2356376438743</acno> </source>

After the adapter operation acknowledges sending the message to the IR, the job then generates the
output file JMSSourceOutput_PutTopic.xml under the directory <DS_COM
MON_DIR>/adapters/JMS/samples/xml. The contents of the file should be similar to the message
received by the sample test with the addition of a timestamp. Note that this file is created as a result of
the design of the job, not as a result of the adapter operation sending a reply message to the job.

Testing on UNIX
Run the sample application by running sampleTest_Put.sh file from the command prompt. This
sample application listens at the destination queue configured for the Put operation instance.

Execute the batch Job JMSPutOperation_BatchJob from the Designer.

6.3.5 Testing Get: Request/Reply

To configure the operation type Get (Request/Reply), enter the following information in the operation
instance configuration page in the Web Administrator.

2012-11-2285

Using the JMS adapter

ValueOption

JMSGetOperationOperation instance

1000Polling interval

1Thread count

trueEnable

Queue.ActaQueueGetSource queue

Queue.TestServiceService

2000Timeout

trueContinue after error

Queue.ActaReplyQueueGetDefault response queue

Queue.ActaUndeliveredQueueUndelivered queue (optional)

After entering this information, clickApply and restart the JMS Adapter instance. When the JMS Adapter
starts running, the operation instance also starts running.

Testing on Windows
Run the sample application (external IR) by running sampleTest_Send.bat file from the command
prompt. This sample application sends the message at the source queue of the Get operation instance
configured in the software.

Also, run another sample application (external IR) by running the batch file sampleTest_Get.bat
file, which receives the reply from SAP BusinessObjects Data Services on a default response queue.

The sample application sampleTest_Send.bat (external IR) sends the message as a request on a
source queue configured for JMSGetOperation instance. JMSGetOperation instance invokes the
real-time batch job and also sends the reply back at the default response queue. The sample application
sampleTest_Get.bat (external IR) receives the reply on this default response queue. If any error
occurs while invoking another service from this Job service, then the original message is sent to the
undelivered queue, for reference by the IR.

Testing on UNIX
Run the sample application (external IR) by running sampleTest_Send.sh file from the command
prompt. This sample application sends the message at the request queue of the operation instance
configured in the software.

Also, run another sample application (external IR) by running the batch file sampleTest_Get.sh file.
This receives the reply from the software on a default response queue.

The sample application sampleTest_Send.sh (external IR) sends the message as a request on a
source queue configured for JMSGetOperation instance. JMSGetOperation instance will invoke the
real-time batch job and also sends the reply back at the default response queue. The sample application
sampleTest_Get.sh (external IR) receives the reply on this default response queue. If any error
occurs while invoking another service from this Job service, then the error message is sent to the
undelivered queue, for reference by the IR.

2012-11-2286

Using the JMS adapter

6.3.6 Testing GetTopic: Request/Acknowledge

To configure the operation type Get topic (Request/Acknowledge), enter the following information in
the operation instance configuration page in the Web Administrator.

ValueOption

JMSGetTopicOperationOperation instance

1000Polling interval

1Thread count

trueEnable

Topic.MyTopicSource topic

Topic.TestServiceService

2000Timeout

trueContinue after error

After entering this information, clickApply and restart the JMS Adapter instance. When the JMS Adapter
starts running, the operation instance also starts running.

Testing on Windows
Run the sample application (external IR) by running the sampleTest_GetTopic.bat file from the
command prompt. This sample application publishes a message to the source topic of the GetTopic
operation instance.

JMSGetTopicOperation, which has subscribed to the topic, receives the message and sends it to the
real-time service. The service then puts the message into file JMSFileTarget_GetTopic.xml in
directory <DS_COMMON_DIR>/adapters/jms/samples/xml.

Testing on UNIX
Run the sample application (external IR) by running the sampleTest_GetTopic.sh file from the
command prompt. This sample application publishes a message to the source topic of the GetTopic
operation instance.

JMSGetTopicOperation, which has subscribed to the topic, receives the message and sends it to the
real-time service. The service then puts the message into file JMSFileTarget_GetTopic.xml in
directory <DS_COMMON_DIR>/adapters/jms/samples/xml.

2012-11-2287

Using the JMS adapter

6.3.7 Testing Get: Request/Acknowledge

To configure the operation type Get (Request/Acknowledgment), enter the following information in the
operation instance configuration page in the Web Administrator.

ValueOption

JMSGetOperationOperation instance

1000Polling interval

1Thread count

trueEnable

Queue.ActaQueueGetSource queue

Queue.TestServiceService

2000Timeout

trueContinue after error

Note:
When you specify a value, this operation changes from Request/Acknowledge-
ment to Request/Reply.

Default response
queue

Note:
When you specify a value, this operation changes from Request/Acknowledge-
ment to Request/Reply.

Undelivered queue

After entering this information, clickApply and restart the JMS Adapter instance. When the JMS Adapter
starts running, the operation instance also starts running.

Testing on Windows
Run the sample application by running sampleTest_Send.bat file from the command prompt.

This sample application (external IR) sends the message as a request on a source queue configured
for JMSGetOperation instance. JMSGetOperation instance invokes the real-time batch job. This creates
an output file JMSSourceOutput_Get.xml as an acknowledgement at the location <DS_COM
MON_DIR>/adapters/JMS/samples/xml. No response is sent to the default response queue since
it is not configured for this type of operation.

Testing on UNIX
Run the sample application by running sampleTest_Send.sh file from the command prompt.

2012-11-2288

Using the JMS adapter

This sample application (external IR) sends the message as a request on a source queue configured
for JMSGetOperation instance. JMSGetOperation instance invokes the real-time batch job. This creates
an output file JMSSourceOutput_Get.xml as an acknowledgement at the location <DS_COM
MON_DIR>/adapters/JMS/samples/xml. No response is sent to the default response queue since
it is not configured for this type of operation.

6.3.8 Testing Put: Request/Acknowledge

To configure the operation type Put (Request/Acknowledge), enter the following information in the
operation instance configuration page in the Web Administrator.

ValueOption

JMSPutOperationOperation instance

1Thread count

JMSPutOperationDisplay name

This operation instance represents the Put Request/Acknowledge operation. It
queues the message to the configured destination queue.

Description

trueEnable

Queue.MyQueueDestination queue

<DS_COMMON_DIR>/adapters/JMS/samples/dtd/JMSPUT_SOURCE.dtdRequest format

sourceRequest XML root el-
ement

Click Apply after entering this information, then restart the adapter instance.

When the JMS Adapter is running, the operation instance is also running.

Testing on Windows
Open a command prompt window and change directory to <DS_COMMON_DIR>\adapters\jms\sam
ples. Run the sample application (external IR) by running sampleTest_Put.bat. The application
should display the message:

Ready to receive message from queue Queue.MyQueue.

Execute the batch Job JMSPutOperation_BatchJob from the Designer.

The sample application (external IR) listens for a message to arrive at the request queue of the
JMSPutOperation instance. When it receives the message, it will print a message to the command
prompt window such as:

Received message: <?xml version="1.0" encoding="UTF-8"?> <source> <age>18</age> <salary>200000000</salary>
<acno>2356376438743</acno> </source>

2012-11-2289

Using the JMS adapter

After the adapter operation acknowledges sending the message to the IR, the job then generates the
output file JMSSourceOutput_Put.xml under the directory <DS_COMMON_DIR>/adapters/JMS/sam
ples/xml. The contents of the file should be similar to the message received by the sample test with
the addition of a timestamp. Note that this file is created as a result of the design of the job, not as a
result of the adapter operation sending a reply message to the job.

Testing on UNIX
Run the sample application by running sampleTest_Put.sh file from the command prompt. This
sample application listens at the destination queue configured for the Put operation instance.

Execute the batch Job JMSPutOperation_BatchJob from the Designer.

The sample application receives the message from the destination queue and an output file
JMSSourceOutput_Put.xml as an acknowledgment gets created under the directory <DS_COM
MON_DIR>/adapters/JMS/samples/xml.

6.3.9 Technical implementation

6.3.9.1 Design considerations

In the current design:
• JMS queues and topics used in the Operation instances must be pre-configured in the Messaging

System.
• Only XML messages are handled.
• GetTopic operations should be configured to specify a Thread Count of 1. Since each thread would

be a subscriber to the topic, each thread would receive the same message and send it to the service,
resulting in multiple copies of the same message going to the service.

6.3.9.2 Error handling and tracing

Error messages are logged in error log file under the <DS_COMMON_DIR>/adapters/log directory
before throwing any exception. The name of the error log file is same as the name of the adapter
configured in the Administrator.

For tracing, the trace messages are logged in the trace file under the <DS_COM
MON_DIR>/adapters/log directory. The name of the trace file is same as the name of the adapter
configured in the Administrator. You can enable the trace option in the Administrator for this adapter.

2012-11-2290

Using the JMS adapter

Trace message shows the execution flow of the adapter and contain useful information on finding the
cause of an error. The output in this trace file is of great help for SAP Business User Support.

6.4 Appendix

6.4.1 Weblogic as JMS provider

Before you run the SAP BusinessObjects Data Services Adapter for JMS, you need to create a
JMSServer, Connection Factory and configure JMS queues.
• Create a JMS Server
• Start the BEA Weblogic server.
• Open the Weblogic console.
• Under services\JMS, click Servers.
• Click Create a new JMS Server button.

Create the instance of JMS server. Then, click Create.

Click the Target link on the screen and select the server from available block to a chosen block. Click
Apply to create the server instance.

6.4.1.1 To create a JMS Connection Factory

1. Start the BEA Weblogic server
2. Open the Weblogic console
3. Under services\JMS, click Connection Factories.

Configure the Connection Factory. For testing purposes, “JMSConnections.AdapterConnectionFactory”
must be configured.

Click the Target link on the screen. Select the server from available block to chosen block.

6.4.1.2 To configure the JMS Connection Factory

2012-11-2291

Using the JMS adapter

For testing purposes, “JMSConnections.AdapterConnectionFactory” must be configured.
1. Click the Target link on the screen.
2. Select the server from available block to chosen block.
3. Click Apply to create the connection factory.

6.4.1.3 To create a JMS queue

1. Start the BEA Weblogic server.
2. Open the Weblogic console
3. Under services\JMS\Servers\ConfigJMSServer\Destinations, click Create a New JMS Queue.

For testing purposes, configure the following queues in the server:
• Queue.MyQueue
• Queue.ActaQueuePutGet
• Queue.ActaQueuePutGet1
• Queue.ActaQueueGet
• Queue.ActaReplyQueueGet
• Queue.ActaUndeliveredQueue

2012-11-2292

Using the JMS adapter

Using the HTTP adapter

7.1 Introduction

7.1.1 Audience and assumptions

This section assumes the following:
• You understand how to use the Designer to design and run Data Services data flows.
• You have a basic understanding of how to use the Administrator to administer Data Services

processes. (To use an adapter, you administer it from the Administrator.)
• You have a working knowledge of the environment this adapter is targeting.
• You know the role an adapter plays in business systems integration
• You have some familiarity with the XML markup language and XML configuration schemas.
• Because you will integrate Data Services and an external system, some familiarity with systems

administration and systems integration issues is recommended.

7.1.2 About this section

This section tells you how to use the HTTP Adapter for integrating SAP BusinessObjects Data Services
with external applications using the HTTP protocol.

This section provides a detailed description of installing the HTTP Adapter. This includes the descriptions
of the pre-requisite software along with their supported versions, the details of the adapter components,
the environment setup for both Data Services and Tomcat and instructions for executing the adapter.

7.2 Overview

2012-11-2293

Using the HTTP adapter

What does the HTTP Adapter provide?
The HTTP Adapter provides data transfer using HTTP and HTTPS protocols.

What is HTTP protocol?
The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative,
hypermedia information systems. HTTP has been in use by the World-Wide Web global information
initiative since 1990 and its use has increased steadily over the years, mainly because it has proven
useful as a generic middleware protocol.

The HTTP protocol is a request/response protocol. A client sends a request to the server in the form
of a request method, URI, and protocol version, followed by a MIME-like message containing request
modifiers, client information, and possible body content over a connection with a server.

The server responds with a status line, including the message's protocol version and a success or error
code, followed by a MIME-like message containing server information, entity meta information, and
possible entity-body content.

HTTP communication usually takes place over TCP/IP connections. The default port is TCP 80 [19],
but other ports can be used. This does not preclude HTTP from being implemented on top of any other
protocol on the Internet, or on other networks. HTTP only presumes a reliable transport; any protocol
that provides such guarantees can be used.

Scope of the HTTP Adapter
The major scope of the HTTP Adapter is:
• To ensure rapid integration of diverse systems and applications by making use of HTTP protocol

with the SAP BusinessObjects Data Services platform to meet unique business process requirements
saving valuable time and effort.

• The HTTP Adapter supports SSL (Secure Socket Layer) to implement security over the HTTP
protocol. Using HTTPS protocol, the data will be protected from any unscrupulous elements.

• The HTTP Adapter supports compress type data encoding while sending and receiving the information
and thus saves network traffic.

• Request/Reply and Request/Acknowledge services by SAP BusinessObjects Data Services can be
initiated through this adapter.

7.3 Architecture

The following diagram shows the functional overview of the HTTP Adapter. It depicts two remote SAP
BusinessObjects Data Services installations using the HTTP Adapter to exchange information. The
same diagram applies for interaction between SAP BusinessObjects Data Services and any other
third-party software supporting the HTTP protocol.

2012-11-2294

Using the HTTP adapter

The flow of control is explained below. Refer to the above diagram.
1. External application invokes a service on SAP BusinessObjects Data Services.
2. A data flow makes a call to the adapter operation instance.
3. The operation instance receives the XML data from RTDF and makes a request on the remote Data

Services server. The operation instance forms the request URL by reading its configuration file. The
URL contains servlet name and the service name, which are configured as part of the operation
instance configuration. In the case of requesting to the information resource, a resource-specific
URL will be configured as part of the operation instance configuration.

4. The information resource (for example, Siebel) can make a request on the remote Data Services
server by using HTTP or HTTPS protocol. The information resource forms the URL, which contains
the servlet name and service name.

5. The servlet runs on the HTTP server (Tomcat) that is a part of Data Services. This HTTP server can
be SSL enabled, depending on user requirements. The servlet processes the request to get the
service name and XML data. It will then invoke that service running locally in Data Services and
send the reply back to the client.

7.4 Installation and configuration

The HTTP Adapter is installed with every SAP BusinessObjects Data Services Job Server.

You need to create and configure an adapter instance and necessary adapter operations of the HTTP
Adapter. Adapter operations identify the integration options available for the configured adapter instance.
The HTTP Adapter servlet is also installed while installing the HTTP Adapter.

The operations provided with the HTTP Adapter include the following:
• Request/Reply operation

This operation is used to execute a remote Data Services service in the Request/Reply mode. It
makes the request to the remote Data Services machine where the HTTP Adapter servlet is running

2012-11-2295

Using the HTTP adapter

and waits for the reply. The service name to be executed can be configured as part of the URL while
configuring the operation instance.

• Request/Acknowledge operation

This operation is used to execute a remote Data Services service in the Request/Acknowledge
mode. It makes the request to the remote Data Services machine where the HTTP Adapter servlet
is running and does not wait for the reply. Instead, it sends acknowledgement if the operation is
successful. The service name to be executed can be configured as part of the URL while configuring
the operation instance.

7.4.1 To configure the HTTP Adapter

To use the HTTP Adapter, create an instance of the adapter together with a real-time data flow (RTDF)
or data flow that you define using the Designer. Before using an HTTP Adapter instance, you must first
configure it as explained in this section. To configure the HTTP Adapter means to configure one or
more instances of the adapter and one or more operation instances for each adapter instance.

All SAP BusinessObjects Data Services adapters communicate with Data Services through a designated
Adapter Manager Job Server. An adapter must first be installed on the same computer as this Job
Server before you can integrate the adapter with Data Services using the Administrator and Designer.
After the adapter is installed:
1. Use the Server Manager utility to configure adapter connections with the Adapter Manager Job

Server. For details, see the “To configure Job Servers” section of the Administrator's Guide.
2. Open the Administrator and:

a. Add at least one instance of the adapter to the Data Services system.
b. If the adapter instance includes operations, add at least one operation for each adapter instance.
c. Start the adapter instance.

Operations are started automatically.

3. Open the Designer and create an adapter datastore. Use metadata accessed through the adapter
to create batch and/or real-time jobs. For details, see the “Adapter datastores” section of the Designer
Guide.

7.4.2 To configure an HTTP Adapter instance

Use the Administrator to add an HTTP Adapter to the SAP BusinessObjects Data Services system and
to edit existing adapter configurations. Until you add the adapter in the Administrator, you cannot run
jobs using information from that adapter.

To add an adapter instance in the administrator:

2012-11-2296

Using the HTTP adapter

1. Select Adapter Instances > Job Server.
2. Click the Configuration tab.
3. Click Add.
4. Select the HTTP Adapter from the list of those available on the Job Server.
5. Enter the required information to create an HTTP Adapter instance.

For details, see “Adapter instance configuration information”.

6. Click Apply.

The Administrator adds the adapter instance to the list of those available to the Data Services system.

7.4.2.1 Adapter instance configuration information

Complete the following fields in the Administrator to set up an HTTP Adapter instance in the SAP
BusinessObjects Data Services system:

Configuration informationField

Enter a unique name that identifies this instance of the HTTP Adapter.Adapter instance name

Enter the host ID of the computer running the Access Server that connects
to this adapter instance.

Access Server host

The Access Server host's message broker port. After you log into the Ad-
ministrator for this Access Server, select Configuration > Interfaces to
view message broker port information.

Access Server connec-
tion port

All adapter Java programs require specific JAR files in the CLASSPATH to
use when starting javaw.exe. For example:
• <LINK_DIR>/lib/acta_adapter_sdk.jar
• <LINK_DIR>/lib/acta_broker_client.jar
• <LINK_DIR>/lib/acta_tool.jar
• <LINK_DIR>/ext/lib/xerces.jar
• <LINK_DIR>/lib/acta_http_adapter.jar
• <LINK_DIR>/lib/jcert.jar
• <LINK_DIR>/lib/jnet.jar
• <LINK_DIR>/lib/jsse.jar

Classpath

When set to True, the adapter interface automatically starts when the Ad-
ministrator starts.

Autostart

2012-11-2297

Using the HTTP adapter

Configuration informationField

Set this flag to control the number of trace messages the adapter writes.
There are two settings:
• True: The adapter interface writes additional information messages to

help debug problems.
• False: The adapter interface writes minimal information messages. The

adapter writes trace messages to the adapter_in
stance_name_trace.txt file in the <DS_COM
MON_DIR>/adapters/logs directory.

Trace mode

Additional command line parameters used for the javaw.exe command
line and for the adapter itself. See specific adapter documentation for details.

Application command line
parameters

The name of the adapter used to create this instance. (Read-only)Adapter type name

The version of the adapter used to create this instance. (Read-only)Adapter version

A name that identifies the adapter class. The name depends on the type
of adapter. (Read-only)

Adapter class

Required if requests are made using the HTTPS protocol. If a password is
given, it is used to check the integrity of the keystore data. Otherwise, the
integrity of the keystore is not checked.

Keystore password

7.4.3 To configure an operation instance

Use the Administrator to add an operation instance to an adapter instance.
1. Select Adapter Instance > Job Server
2. Click the Configuration tab.
3. Click Operations under Dependent Objects.
4. ClickAdd to configure a new operation or click the link of an existing operation to edit its configuration.
5. Select an operation type from the list and click Apply. The options that appear on this page depend

on the operation-specific design.
6. Complete the operation instance configuration form. For details, see “Operation instance configuration

information”.
7. Click Apply.

7.4.3.1 Operation instance configuration information

2012-11-2298

Using the HTTP adapter

Request/Reply operation configuration
Complete the following fields in the Administrator to set up a Request/Reply operation instance:

Configuration informationField

Enter the unique operation instance name. In the Designer, Request/Reply
operation metadata object will be imported with this name.

Operation instance

The number of copies of the Request/Reply operation to run in parallel. For
parallel (asynchronous) processing of messages coming from a real-time service,
use more than one copy. If the sequency of messages is important (synchronous
processing), you should not use more than one thread. The default is 1.

Note:
Multiple copies of real-time services must be supported by multiple copies of
Request/Reply.

Thread count

Enter the operation instance display name. This display name will be visible in
the Designer's metadata browsing window.

Display name

Enter the operation instance description. This description will be visible in the
Designer's metadata browsing window.

Description

True if the Adapter SDK will start this operation instance when the adapter
starts, otherwise false.

Enable

URL where you want to send the HTTP request. Data Services uses the following
server URL format:

http://host:port/admin/servlet/com.acta.adapter.http.serv
er.HTTPActaServlet?ServiceName=ServiceName

• Host: The IP address or host name of the Access Server.
• Port: The port number of the Access Server.
• ServiceName: The name of the service.

Target URL

The HTTP request method to be used for submitting the request. The possible
values are POST and GET.

Request method

This is used to set the content type header of the request. It specifies the nature
of the data by giving type and subtype identifiers.

Content-Type

The ISO code for the language in which the request's document is written. For
example, en means that the language is English in one of its forms.

Content-Language

Specifies the encoding mechanism used for sending the request. Currently
only x-compress and x-gzip are used.

Content-Encoding

Specifies whether to continue the operation if the HTTP server is untrusted
when using the HTTPS protocol.
• True: The operation instance will continue for untrusted servers.
• False: The operation instance will be terminated for untrusted servers.

Continue if untrusted

2012-11-2299

Using the HTTP adapter

Configuration informationField

The DTD file name that defines the request XML message used in this operation.Request DTD

The name of the XML root element in the request DTD.Request XML root el-
ement

The DTD file name that defines the reply XML message used in this operation.Reply DTD

The name of the XML root element in the reply DTD.Reply XML root ele-
ment

Note:
Restart the HTTP Adapter instance so that all configuration changes take effect.

Request/Acknowledge operation configuration
Complete the following fields in the Administrator to configure a Request/Acknowledge operation
instance:

Configuration informationField

Enter the unique operation instance name. In the Designer, Request/Acknowledge
operation metadata object will be imported with this name.

Operation instance

The number of copies of the Request/Acknowledge operation to run in parallel.
For parallel (asynchronous) processing of messages coming from a real-time
service, use more than one copy. If the sequency of messages is important
(synchronous processing), you should not use more than one thread. The default
is 1.

Note:
Multiple copies of real-time services must be supported by multiple copies of
Request/Acknowledge.

Thread count

Enter the operation instance display name. This display name will be visible in
the Designer's metadata browsing window.

Display name

Enter the operation instance description. This description will be visible in the
Designer's metadata browsing window.

Description

True if the Adapter SDK will start this operation instance when the adapter starts,
otherwise false.

Enable

URL where you want to send the HTTP request. Data Services uses the following
server URL format:

http://host:port/admin/servlet/com.acta.adapter.http.serv
er.HTTPActaServlet?ServiceName=ServiceName

• Host: The IP address or host name of the Access Server.
• Port: The port number of the Access Server.
• ServiceName: The name of the service.

Target URL

2012-11-22100

Using the HTTP adapter

Configuration informationField

The HTTP request method to be used for submitting the request. The possible
values are POST and GET.

Request method

This is used to set the content type header of the request. It specifies the nature
of the data by giving type and subtype identifiers.

Content-Type

The ISO code for the language in which the request document is written. For ex-
ample, en means that the language is English in one of its forms.

Content-Language

Specifies the encoding mechanism used for sending the request. Currently only
x-compress and x-gzip are used.

Content-Encoding

Specifies whether to continue the operation if the HTTP server is untrusted when
using the HTTPS protocol.
• True: The operation instance will continue for untrusted servers.
• False: The operation instance will be terminated for untrusted servers.

Continue if untrust-
ed

The DTD file name that defines the request XML message used in this operation.Request DTD

The name of the XML root element in the request DTD.Request XML root
element

Note:
Restart the HTTP Adapter instance so that all configuration changes take effect.

7.4.4 Defining the adapter datastore

Use the HTTP Adapter with an RTDF/data flow when the the RTDF/data flow passes a message to an
operation instance, using either:
• An outbound message (for Request/Acknowledge operations)
• A message function (for Request/Reply operations)

You must define an adapter datastore in the Designer. An RTDF/data flow can then pass a message
to one of the adapter's operation instances defined in the datastore.

To define an adapter datastore, you must:
• Define a datastore object for each adapter instance.
• Define one function or one outbound message for each operation instance to which you want to

pass a message.

The following sections summarize the Designer tasks involved. For complete information, see the
Designer Guide.

2012-11-22101

Using the HTTP adapter

7.4.4.1 To define an adapter datastore

For each adapter instance, define a corresponding datastore object in the Designer object library, in
the "Datastore Editor" window.
1. In the Job Server box, select the Job server that is configured to handle your HTTP adapter.
2. For Adapter instance name, choose the instance name you configured in the Administrator.
3. Click to select the Adapter Properties tab and enter values for each property.
4. Click OK to save values and create the datastore.

7.4.4.2 To import message functions and outbound messages

Messages can be passed from a real-time data flow (RTDF) to an operation instance. You must import
either a function or an outbound message (depending on the type of operation involved) in the Designer
Datastore library for each operation instance.

Real-time dataflows use:

DescriptionMethod

Pass messages to an operation instance if the RTDF waits for a return XML
message from the information resource.

Message functions

Outbound messages pass messages to an operation instance if the RTDF waits
for a confirmation only (not a return XML message) from the information resource.

Outbound mes-
sages

The operation types in the HTTP Adapter have the following invocation types:

Invocation typeOperation type

Message functionRequest/Reply

Outbound messageRequest/Acknowledge

To import the message functions and outbound messages:
1. In the Designer, double click on the datastore that has an associated HTTP Adapter instance.
2. In the "Adapter Metadata Browser" window, right-click on the operation instance to import and select

Import.

The selected operation instance will be added to the datastore. These message functions and outbound
messages can be used for creating the RTDF/data flow in Data Services.

2012-11-22102

Using the HTTP adapter

7.4.5 Configuring SSL with the HTTP adapter

With Secure Sockets Layer (SSL), the HTTP Adapter can use secure transport over the TCP/IP network.

Server-side configuration
To use SSL with the HTTP adapter, you must properly configure your web application server for SSL
support.

If you are using the default web application server bundled with SAP BusinessObjects BI platform, see
the SAP BusinessObjects BI Platform Administrator's Guide for information on how to configure SSL.

If you are using a different third-party web application server, see the web application server's
documentation.

Client-side configuration
On the client side, the HTTP Adapter client internally handles the details of certificate authentication
by implementin the X509TrustManager interface and using SSLSocketFactory classes from the
HttpsURLConnection class.

Whenever an HTTPS request is made to the SSL-enabled web server, the client requests the server's
certificate, which may be issued by a standard authority, such as VeriSign. If the HTTP client finds the
certificate to be one that is trusted by comparing it to the certificate store in
<LINK_DIR>/ext/jre/lib/security, it retrieves all data from the web server. In the case of an
un-trusted certificate, the HTTP client throws an SSLException to the caller.

The HTTP client requires the password for querying the local keystore for verification. This password
can be supplied through the keystorePassword parameter specified as a part of the adapter
configuration.

The operation instance will read the configurable Continue if untrusted flag and, based on its value,
trust the unknown server and its certificate. If the parameter is set to False, then the SSLException is
shown to the user with a friendly message and logged in Data Services' trace files and the client does
not retrieve any data from the server. If the parameter is set to True, then the SSLException is logged
in Data Services' error and trace files and the client proceeds to retrieve data from the server. The
certificate file untrust.cer is downloaded to the user's current working directory or to the
<LINK_DIR>/bin directory. This certificate file can later be imported into the JDK certificate keystore
by using the keytool command-line utility:

keytool -import -alias <description> -file untrust.cer -keystore
<full_path_of_cacerts_file> cacerts -storepass changeit

7.5 Using the HTTP Adapter

2012-11-22103

Using the HTTP adapter

To start the adapter instance:
1. Select the Status tab under "Adapter Instances" in the Administrator.
2. Check the Select box next to the adapter instance that you configured previously.
3. Click Start.

When your adapter instance and its operations start, the message “Started” appears in the status
column. To confirm that all operations are started, click Operations in the "Dependent Objects" column.

If you have a real-time service set up on your system, you can invoke it through the HTTP interface:

http://localhost:8080/admin/jsp/InvokeService.jsp

Using this interface, you can invoke the selected service by sending the input XML to the HTTP Adapter
servlet running on the remote machine where the service is configured.

Note:
For information about how to set up a test service, see the “Verifying real-time connectivity” section in
the Installation Guide.

Request/Reply from Data Services
The Request/Reply operation instance sends the request to the remote SAP BusinessObjects Data
Services machine and waits for the reply.

To check the sample Request/Reply operation, see the “Testing the Request/Reply operation” section.

Request/Acknowledge from Data Services
The Request/Acknowledge operation instance sends the message to the remote SAP BusinessObjects
Data Services machine and gives an acknowledgement.

To check the sample Request/Acknowledge operation, see the “Testing the Request/Acknowledge
operation” section.

7.5.1 Testing the Request/Reply operation

To configure the Request/Reply operation for testing, use the following information to configure the
operation instance in the Administrator:

Configuration informationField

HTTP_ReqReply_FunctionOperation instance

1Thread count

HTTP_ReqReply_FunctionDisplay name

Performs the Request/Reply operationDescription

trueEnable

2012-11-22104

Using the HTTP adapter

Configuration informationField

For HTTP operation, use:

http://ds_host_name:access_server_port/admin/servlet/com.ac
ta.adapter.http.server.HTTPActaServlet?ServiceName=Test

For HTTPS operation, use:

https://ds_host_name:tomcat_https_port/admin/servlet/com.ac
ta.adapter.http.server.HTTPActaServlet?ServiceName=Test

Note:
By default, the HTTPS port of the Tomcat server is 8443. This can be changed
in the Tomcat configuration file (acta-server.xml on Windows, and acta-
server1.xml on UNIX)

Target URL

PostRequest method

text/xmlContent-Type

enContent-Language

application/nocompressContent-Encoding

trueContinue if untrusted

<DS_COMMON_DIR>/adapters/Http/samples/dtd/HTTPTestIn.dtdRequest DTD

testRequest XML root el-
ement

<DS_COMMON_DIR>/adapters/Http/samples/dtd/HTTPTestOut.dtdReply DTD

testReply XML root ele-
ment

After configuring the operation instance, click Apply and then restart the HTTP Adapter instance. After
the HTTP Adapter is running, the operation instance will also be in a running state.

Execute the HTTP_ReqRep_BatchJob job in the Designer.

After the batch job executes successfully, an output file OutputRep.xml will be created in the
<DS_COMMON_DIR>/adapters/Http/samples/xml directory.

7.5.2 Testing the Request/Acknowledge operation

To configure the Request/Acknowledge operation for testing, use the following information to configure
the operation instance in the Administrator:

2012-11-22105

Using the HTTP adapter

Configuration informationField

HTTP_ReqAck_OutboundOperation instance

1Thread count

HTTP_ReqAck_OutboundDisplay name

Performs the Request/Acknowledge operationDescription

trueEnable

For HTTP operation, use:

http://ds_host_name:access_server_port/admin/servlet/com.ac
ta.adapter.http.server.HTTPActaServlet?ServiceName=Test

For HTTPS operation, use:

https://ds_host_name:tomcat_https_port/admin/servlet/com.ac
ta.adapter.http.server.HTTPActaServlet?ServiceName=Test

Note:
By default, the HTTPS port of the Tomcat server is 8443. This can be changed
in the Tomcat configuration file (acta-server.xml on Windows, and acta-
server1.xml on UNIX)

Target URL

PostRequest method

text/xmlContent-Type

enContent-Language

application/nocompressContent-Encoding

trueContinue if untrusted

<DS_COMMON_DIR>/adapters/Http/samples/dtd/HTTPTestIn.dtdRequest DTD

testRequest XML root el-
ement

After configuring the operation instance, click Apply and then restart the HTTP Adapter instance. After
the HTTP Adapter is running, the operation instance will also be in a running state.

Execute the HTTP_ReqAck_BatchJob job in the Designer.

After the batch job executes successfully, an output file OutputAck.xml will be created in the
<DS_COMMON_DIR>/adapters/Http/samples/xml directory.

2012-11-22106

Using the HTTP adapter

7.6 Error handling and tracing

All error and trace messages are logged to the log files in the <DS_COMMON_DIR>/adapters/log
directory. The names of the error and trace log files match the names of the adapter instance as
configured in the Administrator, and appended with _error.txt for error logs and _trace.txt for
trace logs.

For example, if the name of the HTTP Adapter instance is “HTTPAdapter”, the name of the error file
will be HTTPAdapter_error.txt and the name of the trace file will be HTTPAdapter_trace.txt.

2012-11-22107

Using the HTTP adapter

2012-11-22108

Using the HTTP adapter

Using the SuccessFactors adapter

8.1 About this section

This section tells you how to create and configure a SuccessFactors adapter.

8.1.1 Overview

You can create a SuccessFactors adapter instance in the Management Console of the Administrator.

Once you create an adapter instance and a datastore, you can browse and import SuccessFactors
database tables to use as a source or a target in a Data Services dataflow.

8.1.2 Audience and assumptions

This section assumes the following:
• You understand how to use the Designer to design and run Data Services data flows.
• You have a basic understanding of how to use the Administrator to administer Data Services

processes. (To use an adapter, you administer it from the Administrator.)
• You have a working knowledge of the environment this adapter is targeting.
• You know the role an adapter plays in business systems integration
• You have some familiarity with the XML markup language and XML configuration schemas.
• Because you will integrate Data Services and an external system, some familiarity with systems

administration and systems integration issues is recommended.

8.2 Installation and configuration

2012-11-22109

Using the SuccessFactors adapter

The SuccessFactors adapter is installed with every Data Services job server. In order to use the adapter,
you need to create and configure an adapter instance.

Tip:
In the SAP BusinessObjects Data Services Service Manager, make sure theSupport adapter, message
broker and SNMP communication option is enabled. This option can be found in the "Job Server
Properties" window.

8.2.1 Configure the SuccessFactors adapter instance

Use the Administrator to add an adapter for SuccessFactors to the Data Services system and to edit
adapter configurations. Until you add the adapter in the Administrator, you cannot run jobs using
information from that adapter.

Note:
Before you add an adapter in the Administrator, you must establish Administrator connection to your
adapter-enabled repository. For more information about connecting repositories to the Administrator,
see the “Administrator Management” section of the Management Console Guide.

1. Select a job server under the Adapter Instances node in the navigation tree.
2. Click on the Adapter Configuration tab.
3. Click Add to see a list of adapters managed by the job server.
4. Select the adapter for SuccessFactors.
5. Complete the information on the Adapter instance startup configuration page.

DescriptionOption

(Required) Enter a unique name to identify this instance of the adapter.
Spaces are not allowed.

Adapter Instance Name

You can leave this blank.Access Server Host

You can leave this blank..Access Server Port

When set to True, the adapter instance uses SSL (Secure Sockets
Layer) protocol when routing data over the Internet.

Use SSL Protocol

Converts text characters to and from bytes for data.Character Set

Converts text characters to and from bytes for metadata.Metadata Character Set

Applies if the adapter instance fails or crashes. Enter 0 for no retries
and a negative number for indefinite retries.

Adapter Retry Count

The wait, in milliseconds, between adapter retry attempts.Adapter Retry Interval

Indicates the -classpath Java parameter value when the adapter starts.Classpath

When set to True, the adapter interface automatically starts when the
Administrator starts.

Autostart

2012-11-22110

Using the SuccessFactors adapter

DescriptionOption

Set this flag to control the number of trace messages the adapter writes.
When set to True, the adapter interface writes additional information
messages to help debug problems.

When set to False, the dapter interface writes minimal information
messages. The adapter writes trace message to the adapter_in
stance_name_trace.txt file in the
%DS_COMMON_DIR%\adapters\logs directory.

Trace mode

Enabled when launching the Java process that hosts the adapter.

If you are connecting to the adapter from behind a proxy server, add
the following to the end of the Additional Java Launcher options:

-Dhttps.proxyHost=proxy_server_name -Dhttps.proxy
Port=proxy_server_port

Additional Java Launch-
er Options

(Read-only) The name of the adapter used to create this instance.Adapter type name

(Read-only) The version of the adapter used to create this instance.Adapter version

(Read-only) A name that identifies the adapter class. The name depends
on the type of adapter.

Adapter Class

6. Click Apply.

8.2.2 Start and stop the adapter instance

Click the Status tab to view the status of all adapter instances you configured. From this tab, you can
start adapter instances and shut down or abort instances that are running.

Note:
If you make any configuration changes to the SuccessFactors adapter, you'll need to restart the adapter
instance before the changes will take effect.

From the Status tab, you can also navigate to view Adapter Instance configuration details, Log Files,
and Dependent Objects for each configured adapter instance.

8.2.3 Create a SuccessFactor adaptor datastore

2012-11-22111

Using the SuccessFactors adapter

To associate the SuccessFactors adaptor with a data flow, you must create an adapter datastore in the
Designer. For more information about creating an adapter datastore, see the “Datastores” section of
the Designer Guide.

1. In the Datastores tab of the Designer Object Library, right-click and select New.
2. In the "Datastore Editor" window, type a unique name in the Datastore name box.
3. Select Adaptor from the Datastore type list.
4. Select the job server associated with the SuccessFactors adaptor.
5. Choose the name of the adaptor instance from the Adapter instance name list.
6. Click Advanced and configure the following options:

• Web service end point
• Company ID
• Username
• Password
• Default Base64 binary field length in kilobyte (KB)

Binary data is encode in ASCII using Base64 format and Data Services stores this ASCII data
in a varchar field. You must specify the size for the Data Services varchar field. The default is
16 KB.

7. Click OK to save values and finish creating the datastore.
If you do not provide the correct user name and password, or if you entered an invalid parameter,
you will see an error message stating that the adapter connection failed.

8.2.4 Browse and import metadata

You can view and import SuccessFactors tables to use as a source or a target in your dataflows. For
general information on how to browse and import metadata using a Data Services datastore, see the
“Datastores” section of the Designer Guide.

To view data:
1. Double-click the adapter datastore icon.

The "Adapter Metadata Browser" window opens with a list of table objects (and their descriptions)
from SuccessFactors that are available for viewing.

2. Right-click on a table name and select Import or right-click on a datastore and select Import By
Name. For more information about importing metadata, see the Designer Guide.
Once imported, the table appears under the SuccessFactors datastore.

3. To open an imported table, double-click the table icon. You can then view input and output schemas,
and so on.

2012-11-22112

Using the SuccessFactors adapter

8.2.4.1 Metadata mapping

SuccessFactors data types map to Data Services data types as follows:

DescriptionData Services data typesSuccessFactors data types

Integer value.intInteger

decimal(20,0)Long

Double values.doubleFloat

Double values.doubleDouble

Character strings. SuccessFac-
tors provides the size. Data is in
UTF-8.

varcharString

Boolean true/false value.varchar(5)Boolean

Date values in YYYY-MM-DD
formatdateDate

The date/time values that the
adapter retrieves from Success-
Factors are all in ISO 8601 for-
mat (YYYY-MM-
DDThh:mm:ssZ). When the
adapter communicates datetime
information to Data Services, it
receives those values in local
time and the time zone field is
not considered.

datetimeDatetime

In Base64 format. Size is de-
fined in a datastore parameter
named Default Base64 binary
field length.

varcharBinary

8.2.5 Use SuccessFactor tables as a source or a target in your dataflow

2012-11-22113

Using the SuccessFactors adapter

You can use a SuccessFactors table as a source or a target in a dataflow. For more information about
how to do this, see the “Source and target objects” section in the Designer Guide.

Source information
The following adapter source options are available:

DescriptionOption

Specifies the number of rows to be processed as
a batch.Batch size

Separates data between columns.Column delimiter

Separates data between rows.Row delimiter

Data Services uses the SuccessFactors Query Language specification to push down operations to the
source or target database. The following rules apply:
• Only columns can be in the projection.
• The Where clause is of the form <column> operation <constant>.
• Only columns are allowed in the ORDER BY clause.

Target information
Each SuccessFactors table has an id field. The id field is an internal key. When a row is inserted,
SuccessFactors creates an id for that row. When inserting and upserting rows, make sure the input
data does not include the id field. If the data does include the id field, SuccessFactors returns an error.

When a row is updated or deleted, SuccessFactors requires the id field to be present in the input data.
The id field is used to identify a row. If the id field is not present, SuccessFactors returns an error.

The following adapter target option are available:

DescriptionOption

Specifies the number of rows to be processed as a batch.Batch size

Separates data between columns.Column delimiter

Separates data between rows.Row delimiter

2012-11-22114

Using the SuccessFactors adapter

DescriptionOption

Checks the target table for existing rows before adding new rows to the
table. Note that using this option can slow jobs.

When you set this parameter to true, Data Services does the following:

ActionRow status

Inserts a row if it doesn't already exist. If the row does exist,
the software updates the row.Insert

When there is no id field in the input data, the existing row
is updated. If the row doesn't exist, the row is inserted.
When the table has an id field, the row is updated.

Update

Deletes the row.Delete

Use auto correct

Logs data for auditing. Data Services creates audit files and stores them
in the %DS_COMMON_DIR%\log\SFSF directory. The format of the file is
<Datastore name>_<Table name>_<Process id><Thread
id>.dat .

If you set the Use audit option to true, Data Services logs data for the fol-
lowing scenarios:
• If there is no user input keys and a rows cannot be deleted or update,

the id field is automatically logged.
• User input keys are always logged. For insert row, if you do not specify

an input keys, an error is returned. You can specify input keys in the
Query transform that is connected to the SuccessFactors loader.

Use audit

8.2.6 Manually add the SuccessFactors certificate

Data Services automatically includes the SuccessFactors certificate in its Java keystore so that Data
Services recognizes the SuccessFactors instance as a trusted website.

However, if there is an error regarding the SuccessFactors certificate, you can manually add the
certificate back into the Java keystore.
1. Download the certificate file from the SuccessFactors web site.
2. For Windows operating systems, do the following at the command prompt:

a. Type set JAVA_HOME=%LINK_DIR%\ext and press Enter.
b. Type set path=%LINK_DIR%\ext\jre\bin;%path% and press Enter.

2012-11-22115

Using the SuccessFactors adapter

c. Type cd %LINK_DIR%\ext\jre\lib\security and press Enter.
d. Type keytool -import -alias sfsf -file "your certificate file" -keystore

cacerts and press Enter.

Note:
The default keystore password is changeit. When the prompt asks if you can trust the certificate,
type Yes.

3. For UNIX operating systems, do the following at the shell prompt:
a. Type export JAVA_HOME=$LINK_DIR/ext and press Enter.
b. Type export PATH=$LINK_DIR/ext/jre/bin:$PATH and press Enter.
c. Type cd $LINK_DIR/ext/jre/lib/security and press Enter.
d. Type keytool -import -alias <certificate file> -keystore cacerts and press

Enter.

Note:
The default keystore password is changeit. When the prompts asks if you can trust the certificate,
type Yes.

2012-11-22116

Using the SuccessFactors adapter

Object creation XML toolkit

9.1 Overview

The object creation XML toolkit is a collection of utilities and features that enable you to programmatically
create objects such as jobs, dataflows, and workflows from your own application and then import,
validate, and execute them in SAP BusinessObjects Data Services.

The toolkit consists of several primary components:

PurposeComponent

Used to defines Data Services objectsXML schema

Used to create template or example XML of objectsDesigner import and ex-
port tools

Used to send externally generated objects to Data Services and import,
validate, or execute them

Web services

Used to perform specific tasks required by some jobs, such as datastore
password encryption

Auxiliary utilities

9.2 Using the toolkit

In general, the object creation XML toolkit is suitable for two scenarios:
• Exporting Designer-created object definitions for use as templates that are customized with

substitution variables
• Exporting Designer-created object definitions for use as a guideline for creating new object definitions

from scratch

For both scenarios, we recommend that you use the Designer and its import and export capabilities
heavily until you have the object definition to generate from within your own application. After you have
suitable object defintions, you can use web services to import, validate, and execute jobs within Data
Services.

The recommended workflow for using the toolkit is:

2012-11-22117

Object creation XML toolkit

1. Create templates of your objects in the Designer.
2. Export your objects from the Designer to the XML format.
3. Customize the exported XML objects for generation in your external application.
4. Import, validate, and execute the XML objects generated by your application through Data Services'

web services.

9.2.1 Templating objects

A key feature of the object creation XML toolkit is the ability to use the Designer to template your objects.
You can use the Designer to create and debug objects, and then export them to an XML format for
customization and use in your own external application. To create a template object for use in the object
creation XML toolkit, the process is the same as creating any other normal object in the Designer.

Tip:
Although it is possible to use only the XML schema to write complete repository objects from scratch,
we strongly recommend that you use the Designer to create your objects due to complex interactions
between many parts of the XML structure.

For more information about using the Designer to create and configure jobs, dataflows, transforms, and
other objects, see the Designer Guide.

For more information about configuration options available for specific objects, see the Reference Guide.

9.2.2 Exporting objects

The Designer allows you to export SAP BusinessObjects Data Services objects in a standardized,
reproducible XML format. When exporting objects, you can choose to export an entire job or individual
objects. Each export option produces a single XML file that contains all exported objects. If you want
to create separate XML files for each object, use the export editor to individually export each object.

For more information about using the export editor, see the “Export/Import” section of the Administrator
Guide.

9.2.3 Adapting objects

Because the options of many XML objects, such as transforms, have complex interactions and do not
always match the way the configuration appears in the Designer, it's strongly recommended that you
adapt exported versions of these objects that have already been mostly configured how you want. By

2012-11-22118

Object creation XML toolkit

adapting existing objects, you can be more confident that the objects generated by your application will
be free of problems, and function as you expect.

For example, you can configure several transforms using the Designer and then export them to XML
files. In your application, you can assemble the pre-configured transforms into working dataflows, and
use web services to import and run them with Data Services.

Exported objects can still be customized through the use of parameters, as well as simply modifying
the XML directly.

Related Topics
• Parameters and variables

9.2.4 Using web services

After generating custom objects in your application, you can use web service operations provided with
SAP BusinessObjects Data Services to import, validate, and execute them.

The general process for using the object creation XML toolkit with web service operations has several
steps:
1. Log in

If web service security is enabled, use the Logon operation and get a session object.

2. Import objects
Use the Import_Repo_Object operation to import objects to the repository. You can import single or
multiple objects at a time. However, for large XML, you may need to import objects one at a time.
If an error occurs during importing, the operation returns the error message.

3. Validate objects
After the objects have been imported successfully, use the Validate_Repo_Object to perform a
semantic validation. You can also perform the validation on only the highest level object to recursively
validate all dependent objects.
If an error occurs during validation, the operation returns the error message.

4. Execute objects
After the objects have been validated successfully, use the Run_Batch_Job operation to execute
the job now stored in the repository. Use the job name as the parameter for the execution request.
If an error occurs during execution, use the returned runID code and the Get_Error_Log and
Get_Trace_Log operations to retrieve messages specific to this execution of the job.

5. Retrieve operational metadata
Use the runID code returned by Run_Batch_Job along with the Get_Error_Log, Get_Trace_Log, and
Get_Monitor_Log operations to retrieve errors, warnings, trace messages, and performance statistics
for this execution of the job.

6. Remove objects (optional)

2012-11-22119

Object creation XML toolkit

If you don't want the objects to persist in the repository after execution, use the Delete_Repo_Objects
operation to remove them. Because the operation does not remove dependencies automatically,
you need to call it once for each object you want to remove.

7. Remove operational metadata
Error and trace logs for non-execution requests are automatically cleared at the completion of each
request. However, execution logs are not automatically cleared, and must be cleaned up manually.
You can schedule the cleanup of execution logs by setting an appropriate log retention period in the
Administrator.

For more information, see the Management Console Guide.

8. Log out
If you used the Login operation to take advantage of web services security, use the Logout operation
to log out and end the session.

Related Topics
• Logon
• Import_Repo_Object
• Validate_Repo_Object
• Run_Batch_Job
• Get_Error_Log
• Get_Trace_Log
• Get_Monitor_Log
• Delete_Repo_Objects
• Logout

9.2.5 Encrypting passwords

For security, passwords for things such as datastore connections are encrypted when stored in the
repository. However, when importing objects, SAP BusinessObjects Data Services does not perform
the encryption operation. Because of this, in order to use passwords in externally generated objects,
you must use the encrypted form of the password in the generated XML.

To encrypt passwords outside of Data Services, use the al_encrypt utility included with the object
creation XML toolkit. You can use al_encrypt with parameters for either an existing keyfile or a
plain-text passphrase.

By default, al_encrypt outputs the encrypted password to the screen. However, you can use output
redirection to store the encrypted password to a file, and then read the password from that file when
generating the XML for your object. For example:
al_encrypt -e mypassword -p thepassphrase > c:\password.txt

2012-11-22120

Object creation XML toolkit

For complete syntax information for al_encrypt, see the Administrator's Guide: Command line
administration, Password encryption.

9.2.6 Best practices

When using the object creation XML toolkit, there are a number of best practices that you can follow
to simplify your workflow and minimize any problems that you may encounter.

Importing objects
• While you are allowed to import multiple objects at once, you may need to import objects individually

when the XML syntax is large.
• Objects should be imported into the repository in order. That is, lower level objects in the dependency

chain should be imported before higher level objects. For example, if you have a job that contains
a dataflow that uses a file format, you should import the file format, followed by the dataflow, and
then the job. By properly maintaining the correct import order, you can avoid cross-referencing
issues.

• You can avoid import problems by validating your generated XML before importing. That is, ensuring
that elements are closed correctly, and so on.

Validating objects
• Validate your objects using the Designer during your design phase. The validation web service

performs only a runtime validation that is not as comprehensive as the Designer's validation. Validating
in the Designer can provide you with more detailed information that may be helpful in resolving
issues.

• You can validate objects individually or recursively by validating a high level object.

Other
• All object definitions must be placed within the correct container element, DataIntegratorExport. You

can place one or more object definitions into the DataIntegratorExport element.
<?xml version="1.0" encoding="UTF-8" ?>
<DataIntegratorExport repositoryVersion="12.2.0.0000" productVersion="12.1.0.0">

<!-- One or more object definitions -->

</DataIntegratorExport>

• Some Data Services objects support expressions. For example, you can assign a query to the output
field of a query transform. In addition, scripts and custom functions are defined as expressions. The
expressions used in these objects are represented twice in exported XML:
1. As an expr attribute with the same format as shown in the Designer
2. As a complex XML hierarchy

When importing these objects, only the format contained in the expr attribute is required.

• For Data Quality transform custom configurations, it is not required to have best practice input and
output fields defined.

2012-11-22121

Object creation XML toolkit

9.2.7 Limitations

General limitations
You should be aware of several general limitations when using the object creation XML toolkit:
• Some parts of object validation can only be performed in the Designer user interface.

To more quickly identify and fix validation problems, you can import and validate your objects in the
Designer when you are developing custom objects.

• The web service operations do not support import or bulk loading of Data Cleanse dictionaries.

Before using other web services with the Data Cleanse transform, you must configure the appropriate
dictionaries with the Designer.

Concurrent use issues
When multiple users access the same repository concurrently, the Data Services engine locks appropriate
tables and serializes requests so that the repository is always in a structurally valid state. However, you
should be aware of other issues that can arise due to concurrent repository access:
• Referential integrity violation due to object removal

The Delete_Repo_Objects web service operation does not enforce the rule that an object cannot
be deleted if it is being used by other objects. The exception is a datastore, which cannot be deleted
if it contains any child objects.

You should maintain referential object integrity in your application outside Data Services.

• Interference between web service operations

Some available web service operations have the potential to interfere with others if they are currently
running. For example, a job could fail if the job is deleted with the Delete_Repo_Objects operation
at the same time it is being executed with the Run_Batch_Job operation.

You should be careful to synchronize web service operations so that conflicts do not occur.

One way to avoid most concurrent use issues is by maintaining good naming conventions. For example,
by using unique names for objects created in different instances of your application, you can effectively
create a segregated domain for each application instance. As a result, the application instances will
not interfere with each other when performing operations such as creating, modifying, or reading
repository objects.

9.3 XML schema reference

2012-11-22122

Object creation XML toolkit

The object creation XML toolkit supports the creation and usage of all objects available in Data Services.
This section provides information about the structure and usage of some of the most common objects.
For objects not covered in detail, use the export function of the Designer and the “Objects” section in
the Reference Guide as a guide for creating and using your own objects.

Caution:
All examples provided in this section are for reference only. Do not attempt to run them.

Enclosing objects to import
To import XML content into the Data Services repository, it must be enclosed in a DataIntegratorExport
element. Specify the repository and product versions using the repositoryVersion and productVersion
attributes.
<?xml version="1.0" encoding="UTF-8" ?>
<DataIntegratorExport repositoryVersion="12.2.0.0000"
productVersion="12.2.0.0">

</DataIntegratorExport>

The DataIntegratorExport element is required only once per XML file, and should contain all objects
that you want to import.

9.3.1 Batch job

Tip:
It's strongly recommended that you use the Designer to create and export your objects, and then use
your application to adapt them as required. Many object options and parameters interact in complex
ways, and do not always match the way they appear in the Designer.

Creating the object definition
Open the batch job definition with the DIJob element.
<DIJob name="JobName" typeId="2">

Specify steps within the job using the DISteps and DICallStep elements.
<DISteps>
<DICallStep typeID="1" calledObjectType="Dataflow"
name="DataflowName"></DICallStep>

</DISteps>

Apply job-specific attributes with a DIAttribute block.
<DIAttributes>
<DIAttribute name="job_checkpoint_enabled" value="no" />
<DIAttribute name="job_collect_statistics" value="no" />
<DIAttribute name="job_collect_statistics_monitor"
value="no" />

<DIAttribute name="job_enable_assemblers" value="yes" />
...

</DIAttributes>

2012-11-22123

Object creation XML toolkit

End the job definition with the closing tag of the DIJob element.
</DIJob>

Available DIAttribute names
The available DIAttribute names correspond to object parameters and properties, but do not necessarily
match the wording used in the Designer. For a complete description of each attribute, see the
“Descriptions of objects” section in the Designer Guide.

DesignerDIAttribute name

job_checkpoint_en-
abled

Job properties > Execution options > Collect statistics for optimizationjob_collect_statistics

Job properties > Execution options > Collect statistics for monitoringjob_collect_statis-
tics_monitor

job_enable_assem-
blers

job_enable_audit

job_enable_dataquality

job_export_repo

job_export_reports

job_isrecoverable

job_mode

Job properties > Execution options > Monitor sample ratejob_monitor_sam-
ple_rate

Job properties > General > Namejob_name

job_print_version

job_testmode_enabled

Job properties > Trace > Trace ABAP Queryjob_trace_abapquery

Job properties > Execution options > Print all trace messagesjob_trace_all

Job properties > Trace > Access Server Communicationjob_trace_ascomm

Job properties > Trace > Assemblersjob_trace_assemblers

Job properties > Trace > Audit Datajob_trace_audit

Job properties > Trace > Data Flowjob_trace_dataflow

Job properties > Trace > IDoc file readerjob_trace_idoc_file

Job properties > Trace > Memory Targetjob_trace_memo-
ry_loader

2012-11-22124

Object creation XML toolkit

DesignerDIAttribute name

Job properties > Trace > Memory Sourcejob_trace_memo-
ry_reader

Job properties > Trace > Optimized Dataflowjob_trace_opti-
mized_dataflow

Job properties > Trace > Trace Parallel Executionjob_trace_parallel_exe-
cution

Job properties > Trace > RFC Functionjob_trace_rfc_function

Job properties > Trace > Rowjob_trace_row

Job properties > Trace > Scripts and Script Functionsjob_trace_script

Job properties > Trace > Sessionjob_trace_session

Job properties > Trace > SQL Onlyjob_trace_sql_only

Job properties > Trace > SQL Functionsjob_trace_sqlfunctions

Job properties > Trace > SQL Loadersjob_trace_sqlloaders

Job properties > Trace > SQL Readersjob_trace_sqlreaders

Job properties > Trace > SQL Transformsjob_trace_sqltrans-
forms

Job properties > Trace > Stored Procedurejob_trace_stored_pro-
cedure

Job properties > Trace > Tablesjob_trace_table

Job properties > Tracejob_trace_table_reader

Job properties > Trace > Transformjob_trace_transform

Job properties > Tracejob_trace_userfunction

Job properties > Tracejob_trace_usertrans-
form

Job properties > Trace > Work Flowjob_trace_workflow

job_type

Job properties > Execution options > Use collected statisticsjob_use_statistics

2012-11-22125

Object creation XML toolkit

DesignerDIAttribute name

locale_codepage

locale_language

locale_territory

9.3.2 Workflow

Tip:
It's strongly recommended that you use the Designer to create and export your objects, and then use
your application to adapt them as required. Many object options and parameters interact in complex
ways, and do not always match the way they appear in the Designer.

Creating the object definition
Open the workflow definition with the DIWorkflow element.

<DIWorkflow name="WorkflowName" typeId="2">

Specify steps within the workflow using the DISteps, DICallStep, and DIScript elements.
<DISteps>
<DIScript>
<DIUIOptions>
<DIAttribute name="ui_display_name"
value="ScriptName" />

</DUIOptions>
...

</DIScript>
<DICallStep typeID="1" calledObjectType="Dataflow"
name="DataflowName"></DICallStep>

<DIScript>
<DIUIOptions>
<DIAttribute name="ui_display_name"
value="ScriptName" />

</DUIOptions>
...

</DIScript>
</DISteps>

Apply workflow-specific attributes with a DIAttribute block.
<DIAttributes>
<DIAttribute name="run_once" value="no" />
<DIAttribute name="unit_of_recovery" value="no" />

</DIAttributes>

End the workflow definition with the closing tag of the DIWorkflow element.
</DIWorkflow>

2012-11-22126

Object creation XML toolkit

Available DIAttribute names
The available DIAttribute names correspond to workflow parameters and properties, but do not
necessarily match the wording used in the Designer. For a complete description of each attribute, see
the “Descriptions of objects” section in the Designer Guide.

DesignerDIAttribute name

Properties > General > Execute only oncerun_once

Properties > General > Recover as a unitunit_of_recovery

9.3.3 Dataflow

Tip:
It's strongly recommended that you use the Designer to create and export your objects, and then use
your application to adapt them as required. Many object options and parameters interact in complex
ways, and do not always match the way they appear in the Designer.

Creating the object definition
Open the dataflow definition with the DIDataflow element.
<DIDataflow name="DataflowName" typeId="1">

Invoke transforms within DIDataflow by using the DITransforms element.
<DITransforms>
<DIFileSource typeId="33" formatName="FileFormatName"
filename="filename.txt"/>

<DIQuery typeId="22"/>
<DIFileTarget typeId="3"/>
...

</DITransforms>

Apply dataflow-specific attributes with a DIAttribute block.
<DIAttributes>
<DIAttribute name="Cache_type" value="pageable_cache" />
<DIAttribute name="Parallelism_degree" value="0" />
<DIAttribute name="allows_both_input_and_output"
value="yes" />

<DIAttribute name="run_once" value="no" />
<DIAttribute name="use_dataflow_links" value="no" />
<DIAttribute name="use_datastore_links" value="yes" />
<DIAttribute name="validation_xform_exists" value="no" />
<DIAttribute name="validation_xform_stats" value="no" />

</DIAttributes>

End the dataflow definition with the closing tag of the DIDataflow element.
</DIDataflow>

2012-11-22127

Object creation XML toolkit

Available DIAttribute names
The available DIAttribute names correspond to object parameters and properties, but do not necessarily
match the wording used in the Designer. For a complete description of each attribute, see the
“Descriptions of objects” section in the Designer Guide.

DesignerDIAttribute name

Properties > General > Cache typeCache_type

Properties > General > Degree of parallelismParallelism_degree

allows_both_input_and_output

Properties > General > Execute only oncerun_once

use_dataflow_links

Properties > General > Use database linksuse_datastore_links

validation_xform_exists

validation_xform_stats

9.3.4 Script

Tip:
It's strongly recommended that you use the Designer to create and export your objects, and then use
your application to adapt them as required. Many object options and parameters interact in complex
ways, and do not always match the way they appear in the Designer.

Creating the object definition
Open the script definition with the DIScript element.
<DIScript>

Specify the name of the script with a DIAttribute element in the DIOptions block.
<DIOptions>
<DIAttribute name="ui_display_name" value="script_name" />

</DIOptions>

Include expressions with the DIExpression element. In exported objects, additional XML syntax may
be present. However, this additional syntax is optional; only the expr attribute of DIExpression is required.
<DIExpression isString="true" expr="script_expression">
<Additional optional XML syntax/>

</DIExpression>

2012-11-22128

Object creation XML toolkit

Include functions with the DIFunctionCallStep element. Define the function using a DIExpression element.
In exported objects, additional XML syntax may be present. However, this additional syntax is optional.
<DIFunctionCallStep typeId="23">
<DIExpression isString="true" expr="function_call">
<Additional optional XML syntax/>

</DIExpression>
</DIFunctionCallStep>

End the script definition with the closing tag of the DIScript element.
</DIScript>

Available DIAttribute names
The available DIAttribute names correspond to object parameters and properties, but do not necessarily
match the wording or location used in the Designer. For a complete description of each attribute, see
the “Descriptions of objects” section in the Designer Guide.

DesignerDIAttribute name

Properties > General > Nameui_display_name

For more information about scripts, see the “Objects, Script” section in the Reference Guide.

9.3.5 File format

Tip:
It's strongly recommended that you use the Designer to create and export your objects, and then use
your application to adapt them as required. Many object options and parameters interact in complex
ways, and do not always match the way they appear in the Designer.

Creating the object definition
Open the file format definition with the DIFlatFileDatastore element.
<DIFlatFileDatastore name="FileFormatName" typeId="3">

Specify field names, types, and sizes with DIElement elements in the DISchema block.
<DISchema>
<DIElement name="FieldName1" datatype="VARCHAR" size="7">
</DIElement>
<DIElement name="FieldName2" datatype="VARCHAR" size="7">
</DIElement>
...

</DISchema>

Apply file format-specific attributes with a DIAttribute block.
<DIAttributes>
<DIAttribute name="abap_file_format" value="no" />
<DIAttribute name="blank_pad" value="leading" />
<DIAttribute name="cache" value="yes" />

2012-11-22129

Object creation XML toolkit

<DIAttribute name="column_delimiter" value=", " />
...

</DIAttributes>

End the file format definition with the closing tag of the DIFlatFileDatastore element.
</DIFlatFileDatastore>

Available DIAttribute names
The available DIAttribute names correspond to object parameters and properties, but do not necessarily
match the wording used in the Designer. For a complete description of each attribute, see the
“Descriptions of objects” section in the Designer Guide.

DesignerDIAttribute name

File Format Editor > General > Type > SAP transportabap_file_format

File Format Editor > General > Adaptable Schemaadaptable

File Format Editor > Input/Output > BOF Markerbeginning_of_file_string

File Format Editor > Default format > Blank paddingblank_pad

cache

File Format Editor > Delimiters > Columncolumn_delimiter

column_width

File Format Editor > Field Size for column ncolumn_widthn

File Format Editor > General > Data Alignmentdata_alignment

File Format Editor > Default Format > Datedate_format

File Format Editor > Default Format > Date-Timedatetime_format

File Format Editor > Input/Output > EOF Markerend_of_file_string

File Format Editor > Default Format > Escape charescape_character

file_format

File Format Editor > Data File(s) > Locationfile_location

File Format Editor > Data File(s) > File name(s)file_name

File Format Editor > General > Typefile_type

File Format Editor > Default Format > Ignore row marker(s)ignore_row_markers

File Format Editor > Locale > Code pagelocale_codepage

File Format Editor > Locale > Languagelocale_language

locale_territory

File Format Editor > General > Namename

File Format Editor > Default Format > NULL inicatornull_indicator

2012-11-22130

Object creation XML toolkit

DesignerDIAttribute name

File Format Editor > Input/Output > Skipped rowsnumber_of_rows_to_skip

File Format Editor > General > Parallel process threadsnumber_of_threads

File Format Editor > Error handling >Capture data conversion
errors

reader_capture_data_conver-
sion_errors

File Format Editor > Error handling > Capture row format er-
rors

reader_capture_row_format_errors

File Format Editor > Error handling > Error file namereader_error_file_name

File Format Editor > Error handling > Error file root directoryreader_error_file_root_dir

File Format Editor > Error handling > Log data conversion
warnings

reader_log_data_conversion_warn-
ings

File Format Editor >Error handling > Log row format warningsreader_log_row_format_warnings

File Format Editor > Error handling > Maximum warnings to
log

reader_maximum_warnings_to_log

File Format Editor > Error handling > Write error rows to filereader_write_error_rows_to_file

File Format Editor > Data File(s) > Root directoryroot_dir

File Format Editor > Delimiters > Rowrow_delimiter

File Format Editor > Input/Output > Skip row headerskip_row_header

table_weight

File Format Editor > Default Format > Timetime_format

File Format Editor > Custom Transfer > Argumentstransfer_argument

File Format Editor > General > Custom transfer programtransfer_custom

File Format Editor > Custom Transfer > Program executabletransfer_name

File Format Editor > Custom Transfer > Passwordtransfer_password

File Format Editor > Custom Transfer > User nametransfer_user

use_root_dir

File Format Editor > Input/Output > Write BOMwrite_bom

File Format Editor > Input/Output > Write row headerwrite_row_header

9.3.5.1 To use as a source

2012-11-22131

Object creation XML toolkit

To use a file format as a source within a dataflow, invoke the format with the DIFileSource element.
The DIFileSource element must be placed within the DITransforms section of a dataflow.
<DIFileSource typeId="33" formatName="FormatName"
filename="FileName">

Define the name of the source with a DIAttribute element.
<DIUIOptions>
<DIAttribute name="ui_display_name" value="SourceName" />
</DIUIOptions>

Specify a name for the output schema with the DIOutputView element. By default, it is set to the format
name. However, you can change it to any unique string, and use it in all downstream transforms.
<DIOutputView name="SchemaName" />

Apply source-specific attributes with a DIAttribute block.
<DIAttributes>
<DIAttribute name="adaptable" value="no" />
<DIAttribute name="cache" value="yes" />
<DIAttribute name="connection_port" value="no" />
<DIAttribute name="file_location" value="local" />
...

</DIAttributes>

End the source definition, with the closing tag of the DIFileSource element.
</DIFileSource>

Available DIAttribute names
The available DIAttribute names correspond to object parameters and properties, but do not necessarily
match the wording or location used in the Designer. For a complete description of each attribute, see
the “Descriptions of objects” section in the Designer Guide.

DesignerDIAttribute name

Source File Editor > General > Adaptable Schemaadaptable

Source File Editor > General > Cachecache

connection_port

Source File Editor > Data File(s) > Locationfile_location

Source File Editor > General > Namename

Source File Editor > Error handling >Capture data conversion
errors

reader_capture_data_conver-
sion_errors

Source File Editor > Error handling > Capture row format er-
rors

reader_capture_row_format_errors

Source File Editor > Source information > Column namereader_filename_col

Source File Editor > Source information > Column sizereader_filename_col_size

2012-11-22132

Object creation XML toolkit

DesignerDIAttribute name

Source File Editor > Source information > Include pathreader_filename_only

Source File Editor > Source information > Include file name
column

reader_include_filename

Source File Editor > Error handling > Log data conversion
warnings

reader_log_data_conversion_warn-
ings

Source File Editor >Error handling > Log row format warningsreader_log_row_format_warnings

Source File Editor > Error handling > Maximum warnings to
log

reader_maximum_warnings_to_log

Source File Editor > Error handling > Write error rows to filereader_write_error_rows_to_file

Source File Editor > Data File(s) > Root directoryroot_dir

table_weight

Source File Editor > General > Custom transfer programtransfer_custom

9.3.5.2 To use as a target

To use a file format as a target within a dataflow, invoke the format with the DIFileTarget element. The
DIFileTarget element must be placed within the DITransforms section of a dataflow.
<DIFileTarget typeId="3" formatName="FormatName"
filename="FileName">

Define the name of the target with a DIAttribute element.
<DIUIOptions>
<DIAttribute name="ui_display_name" value="TargetName" />
</DIUIOptions>

Specify a name for the input schema with the DIInputView element. By default, it is set to the format
name. However, you can change it to any unique string, and use it in all downstream transforms.
<DIInputView name="SchemaName" />

Apply target-specific attributes with a DIAttribute block.
<DIAttributes>
<DIAttribute name="connection_port" value="no" />
<DIAttribute name="file_location" value="local" />
<DIAttribute name="isstreamdebugfile" value="no" />
<DIAttribute name="loader_load_choice" value="replace" />
...

</DIAttributes>

2012-11-22133

Object creation XML toolkit

End the target definition, with the closing tag of the DIFileTarget element.
</DIFileTarget>

Available DIAttribute names
The available DIAttribute names correspond to object parameters and properties, but do not necessarily
match the wording or location used in the Designer. For a complete description of each attribute, see
the “Descriptions of objects” section in the Designer Guide.

DesignerDIAttribute name

Target File Editor > General > Make portconnection_port

Target File Editor > Data File(s) > Locationfile_location

isstreamdebugfile

loadler_load_choice

Target File Editor > General > Namename

Target File Editor > Data File(s) > Root directoryroot_dir

Target File Editor > General > Custom transfer programtransfer_custom

Target File Editor > Default Format > Validate decimal datavalidate_decimal_data

9.3.6 Database datastore

Tip:
It's strongly recommended that you use the Designer to create and export your objects, and then use
your application to adapt them as required. Many object options and parameters interact in complex
ways, and do not always match the way they appear in the Designer.

Creating the object definition
Open the database datastore definition with the DIDatabaseDatastore element.
<DIDatabaseDatastore name="datastore_name" typeId="3">

Apply database datastore-specific attributes with a DIAttribute block.
<DIAttributes>
<DIAttribute name="DBLiveLoad" value="no" />
<DIAttribute name="application_type" value="Custom" />
<DIAttribute name="cdc_enabled" value="no" />
<DIAttribute name="datastore_repotype" value="local" />
...
<DIAttribute name="ds_configurations" hasNestedXMLTree="true">

2012-11-22134

Object creation XML toolkit

Specify one or more datastore configurations inside the DIAttribute block with a DSConfigurations block.
Only one configuration can be set as default.

<DSConfigurations>
<DSConfiguration default="true" name="configuration_name">
<case_sensitive>no</case_sensitive>
<database_type>Microsoft_SQL_Server</database_type>
<loader_xact_size>1000</loader_xact_size>
<locale_codepage>default</locale_codepage>
<locale_language>default</locale_language>
<locale_territory>default</locale_territory>
<mssql_windows_authentication>
no

</mssql_windows_authentication>
<password>;907A8897CEF453232929BD93946</password>
<server_codepage>default</server_codepage>
<sql_server_database>
DS32_Source

</sql_server_database>
<sql_server_dataserver>
testMachine

</sql_server_dataserver>
<sql_server_version>
Microsoft SQL Server 2000

</sql_server_version>
<user>ods</user>

</DSConfiguration>
</DSConfigurations>

Close the DIAttribute block.
</DIAttribute>

</DIAttributes>

End the database datastore definition with the closing tag of the DIDatabaseDatastore element.
</DIDatabaseDatastore>

Available DIAttribute names
The available DIAttribute names correspond to object parameters and properties, but do not necessarily
match the wording or location used in the Designer. The specific DIAttributes and XML elements available
vary greatly depending on which type of database you are accessing. It's recommended that you create
your datastore definitions using the Designer and then export them to XML.

For a complete description of each attribute, see the “Descriptions of objects” section in the Designer
Guide.

9.3.7 Database table

Tip:
It's strongly recommended that you use the Designer to create and export your objects, and then use
your application to adapt them as required. Many object options and parameters interact in complex
ways, and do not always match the way they appear in the Designer.

2012-11-22135

Object creation XML toolkit

Creating the object definition
Open the database table definition with the DITable element.
<DITable name="TableName" owner="Owner"
datastore="DatastoreName" database="DatabaseName"
description="Description">

Apply table-specific properties with a DIProperties block. To define the table as a template table, set
the value of the Loader_Is_Template_Table DIAttribute to yes.
<DIProperties>
<DIAttribute name="Table_Type" value="TABLE" />
<DIAttribute name="Estimated_Row_Count" value="50000" />
<DIAttribute name="Loader_Is_Template_Table" value="no" />
<DIAttribute name="db_alias_name" value="ODS" />
...

</DIProperties>

Specify column definitions with DIColumn elments. You can also define the content type for a column
with the Content_Type attribute.
<DIColumn name="Cust_ID" datatype="VARCHAR" size="10"
nullable="false" />

<DIColumn name="Cust_classf" datatype="VARCHAR" size="2"
nullable="true" />

<DIColumn name="Address" datatype="VARCHAR" size="35"
nullable="true" Content_Type="ADDRESS">
<DIProperties>
<DIAttribute name="Content_Type" value="ADDRESS" />

</DIProperties>
</DIColumn>

Define the primary keys with a DIPrimaryKey block.
<DIPrimaryKey>
<DIPrimaryKeyColumn name="Cust_ID" />

</DIPrimaryKey>

Define the unique table index with a DITableIndex element and specify the column name in a
DIIndexColumn element.
<DITableIndex name="PK__ODS_CUSTOMER__7C8480A" unique="true">
<DIIndexColumn name="Cust_ID" />

</DITableIndex>

End the database table definition with the closing tag of the DITable element.
</DITable>

Available DIAttribute names
The available DIAttribute names correspond to object parameters and properties, but do not necessarily
match the wording or location used in the Designer. For a complete description of each attribute, see
the “Descriptions of objects” section in the Designer Guide.

9.3.7.1 To use as a source

2012-11-22136

Object creation XML toolkit

To use a database table as a source within a dataflow, invoke the table with the DIDatabaseTableSource
element. The DIDatabaseTableSource element must be placed within the DITransforms section of a
dataflow.
<DIDatabaseTableSource typeId="22" datastoreName="DatastoreName"
ownerName="OwnerName" tableName="TableName">

Specify a name for the output schema with the DIOutputView element.
<DIOutputView name="SchemaName" />

Apply source-specific attributes with a DIAttribute block.
<DIAttributes>
<DIAttribute name="array_fetch_size" value="1000" />
<DIAttribute name="cache" value="yes" />
<DIAttribute name="connection_port" value="no" />
<DIAttribute name="enable_partitioning" value="no" />
...

</DIAttributes>

End the source definition, with the closing tag of the DIDatabaseTableSource element.
</DIDatabaseTableSource>

Available DIAttribute names
The available DIAttribute names correspond to object parameters and properties, but do not necessarily
match the wording or location used in the Designer. For a complete description of each attribute, see
the “Descriptions of objects” section in the Designer Guide.

DesignerDIAttribute name

Source Table Editor > Performance > Array fetch sizearray_fetch_size

Source Table Editor > Performance > Cachecache

Source Table Editor > Make portconnection_port

enable_partitioning

Source Table Editor > Datastore namename

package_size

reader_is_DB2CDC_table

reader_overflow_file

2012-11-22137

Object creation XML toolkit

DesignerDIAttribute name

reader_template_table

reader_use_overflow_file

Source Table Editor > Performance > Join ranktable_weight

9.3.7.2 To use as a target

To use a database table as a target within a dataflow, invoke the table with the DIDatabaseTableTarget
element. The DIDatabaseTableTarget element must be placed within the DITransforms section of a
dataflow.
<DIDatabaseTableTarget typeId="11" bulkLoader="false"
datastoreName="DatastoreName" ownerName="OwnerName"
tableName="TableName">

Specify a name for the input schema with the DIInputView element.
<DIInputView name="SchemaName" />

Apply target-specific attributes with a DIAttribute block.
<DIAttributes>
<DIAttribute name="connection_port" value="no" />
<DIAttribute name="loader_template_table" value="yes" />
...
<DIAttribute name="ldr_configuration_enabled"
value="yes" />

<DIAttribute name="ldr_configurations"
hasNestedXMLTree="true">

Specify the target configuration inside the DIAttribute block with a LDRConfigurations block.
<LDRConfigurations>
<LDRConfiguration database_type="Microsoft_SQL_Server"
database_version="Microsoft SQL Server 2000">
<auto_correct_using_merge>Yes</auto_correct_using_merge>
<bulk_ldr_all_rows></bulk_ldr_all_rows>
<bulk_ldr_max_errors></bulk_ldr_max_errors>
<bulk_ldr_rows_per_commit></bulk_ldr_rows_per_commit>
<enable_partitioning>no</enable_partitioning>
<ignore_column_case>yes</ignore_column_case>
<ignore_columns_null>No</ignore_columns_null>
<ignore_columns_value></ignore_columns_value>
<loader_auto_correct>no</loader_auto_correct>
<loader_bulk_load>0</loader_bulk_load>
...

</LDRConfiguration>
</LDRConfigurations>

Close the DIAttribute block.
</DIAttribute>

</DIAttributes>

2012-11-22138

Object creation XML toolkit

End the target definition, with the closing tag of the DIDatabaseTableTarget element.
</DIDatabaseTableTarget>

Available DIAttribute names
The available DIAttribute names correspond to object parameters and properties, but do not necessarily
match the wording or location used in the Designer. The specific DIAttributes and XML elements available
vary greatly depending on which type of database you are accessing. It's recommended that you create
your database table targets using the Designer and then export them to XML.

For a complete description of each attribute, see the “Descriptions of objects” section in the Designer
Guide.

DesignerDIAttribute name

Target Table Editor > Target > Make portconnection_port

Target Table Editor > Target > Datastore namename

use_unicode_varchar

9.3.8 Data Quality transforms

The options of Data Quality transforms have complex interactions and do not always match the way
the transform configuration appears in the Designer. It's strongly recommended that you adapt exported
versions of these transforms that have already been mostly configured how you want. By adapting
existing objects, you can be more confident that the objects generated by your application will be free
of problems, and function as you expect.

Because of the complexity of the Data Quality transforms, XSD files are provided for each transform.
By default, the XSD files are installed to LINK_DIR\Admin.

Note:
XML exported from the Designer may not validate correctly against the provided XSD files due to
element ordering. However, any objects created by using the XSD files will operate correctly when
imported to SAP BusinessObjects Data Services.

Related Topics
• Adapting objects

2012-11-22139

Object creation XML toolkit

9.3.8.1 Hierarchy and inheritance

The ability to reuse transform configurations is a powerful feature of all Data Quality transforms available
in SAP BusinessObjects Data Services. To successfully use Data Quality transforms with the object
creation XML toolkit, it's important to understand the rules of option inheritance and configuration reuse.

Data Quality transforms support three levels of configurations: base configuration, custom configuration,
and instance configuration. Each level of configuration inherits the options and settings from the levels
below it. However, settings defined explicitly at a higher level always take precedence over those
inherited from a lower level.

In the Designer, the base configuration is simply represented in the form of the base transform. For
example, the Global_Address_Cleanse transform. The base configuration carries the default settings
for all options available for that transform. If you double-click any base transform, the configuration is
opened in the Transform Configuration Editor. The Options tab lists all options set on the base
configuration.

The custom configuration inherits the default settings from the base configuration, but also provides
the ability to modify the values of any options at the custom level. In the Designer, the custom
configuration level is represented by the available transform configurations. For example, for Global
Address Cleanse, custom transform configurations such as Australia_AddressCleanse, Europe_Ad
dressCleanse, and USA_AddressCleanse are available. For more information about transform
configurations, see the “Data Flows, Transforms” section in the Designer Guide.

The instance configuration inherits default settings from the custom configuration, and provides the
ability to further modify the values of any options. In the Designer, the instance configuration is
represented by a transform instance within a data flow.

2012-11-22140

Object creation XML toolkit

9.3.9 Query transform

Tip:
It's strongly recommended that you use the Designer to create and export your objects, and then use
your application to adapt them as required. Many object options and parameters interact in complex
ways, and do not always match the way they appear in the Designer.

Creating the object definition
Open the query transform definition with the DIQuery element.
<DIQuery typeId="122">

Specify the name of the query transform and additional user interface options, such as the SQL where
clause, in the DIUIOptions block.
<DIUIOptions>
<DIAttribute name="ui_display_name" value="QryCDC" />
<DIAttribute name="ui_where_text" value="WhereClause" />

</DIUIOptions>

Define the output schema with DIElement elements within a DISchema block. The input schema for
each field is defined in the ui_mapping_text attribute, using the format InputSchemaName.Input
FieldName.
<DISchema name="QryCDC">
<DIElement name="CUST_ID" datatype="VARCHAR" size="10" key="true">
<DIAttributes>
<DIAttribute name="Description" value="" />
<DIAttribute name="ui_mapping_text"
value="ODS_CUSTOMER.CUST_ID" />

</DIAttributes>
</DIElement>

<DIElement name="CUST_CLASSF" datatype="VARCHAR" size="2">
<DIAttributes>
<DIAttribute name="Description" value="" />
<DIAttribute name="ui_mapping_text"
value="ODS_CUSTOMER.CUST_CLASSF" />

</DIAttributes>
</DIElement>

...
</DISchema>

Define the expression for each output field with DIExpression elements within a DIProjection block. For
exported XML, additional XML syntax for the output field may be present, but only the form used in the
expr attribute is required.
<DISelect>
<DIProjection>
<DIExpression isString="true" expr="ODS_CUSTOMER.CUST_ID">
<COLUMN_REFERENCE qualifier1="ODS_CUSTOMER"
column="CUST_ID" />

</DIExpression>
<DIExpression isString="true"
expr="ODS_CUSTOMER.CUST_CLASSF" />

</DIProjection>

2012-11-22141

Object creation XML toolkit

Specify the input schema in the DIFrom element.
<DIFrom>
<DITableSpec name="ODS_CUSTOMER" />

</DIFrom>

Define the SQL where clause with a DIExpression element within a DIWhere block. For exported XML,
additional XML syntax for the expression may be present, but only the form used in the expr attribute
is required. The format is the same as it appears in the Designer.
<DIWhere>
<DIExpression isString="true"
expr="((ODS_CUSTOMER.CUST_TIMESTAMP >=
$GV_STARTTIME) AND$#xA; (ODS_CUSTOMER.CUST_TIMESTAMP
<= $GV_ENDTIME))">

<!-- Additional XML syntax -->
</DIExpression>

</DIWhere>
</DISelect>

Apply query-specific attributes with a DIAttribute block.
<DIAttributes>
<DIAttribute name="distinct_run_as_separate_process"
value="no" />

<DIAttribute name="group_by_run_as_separate_process"
value="no" />

<DIAttribute name="join_run_as_separate_process"
value="no" />

<DIAttribute name="order_by_run_as_separate_process"
value="no" />

...
</DIAttributes>

End the query transform definition with the closing tag of the DIQuery element.
</DIQuery>

Available DIAttribute names
The available DIAttribute names correspond to object parameters and properties, but do not necessarily
match the wording or location used in the Designer. For a complete description of each attribute, see
the “Descriptions of objects” section in the Designer Guide.

2012-11-22142

Object creation XML toolkit

DesignerDIAttribute name

Query Editor > Advanced > Run DISTINCT as a separate pro-
cess

distinct_run_as_separate_process

Query Editor > Advanced > Run GROUP BY as a separate
process

group_by_run_as_separate_pro-
cess

Query Editor > Advanced > Run JOIN as a separate processjoin_run_as_separate_process

Query Editor > Advanced > Run ORDER BY as a separate
process

order_by_run_as_separate_pro-
cess

run_as_separate_process

9.3.10 Parameters and variables

You can increase the flexibility and reusability of components generated by your application by using
local and global variables when designing your jobs. For more information about including variables
and parameters in the design of your jobs, see the “Variables and Parameters” section of the Designer
Guide.

Global variables
Global variables can be accessed in XML within the DIScript element. For example, to assign a constant
value to a global variable, you could use the DIAssignmentStep element:
<DIAssignmentStep typeId="12" variable="$GV_STARTTIME">
<DIExpression isString="true"
expression="'2001.01.01 00:00:000'" />

</DIAssignmentStep>

After the global variable is defined, you can use it elsewhere in script expressions used by your job.
For example, you might insert the value of the variable into a table using a SQL query:
<DIFunctionCallStep typeId="23">
<DIExpression isString="true"
expr="sql('Target_DS', 'INSERT INTO TARGET.CDC_TIME
VALUES ({$GV_STARTTIME})')" />

</DIFunctionCallStep>

For more information about using global variables in your jobs, see the “Variables and Parameters,
Using global variables” section of the Designer Guide.

Substitution parameters
You can import one or more substitution parameter configurations to the repository with the
Import_Repo_Object web service operation, as well as the Designer. In XML, substitution parameters
are specified within the DISubVarStore and SVConfigurations elements.

<DISubVarStore typeId="103">
<SVConfigurations>

2012-11-22143

Object creation XML toolkit

A default configuration can be specified with the DIAttribute element. This element is not required to
import the substitution parameters.
<DIAttributes>
<DIAttribute name="SV_Config_Default"
value="Configuration_1" />

</DIAttributes>

Specify a substitution parameter configuration with the SVConfiguration and SubVar elements. You
can include more than one SVConfiguration block to specify additional substitution parameter
configurations.
<SVConfiguration name="Configuration_1">
<SubVar name="ReportsAddressCleanse">1</SubVar>
<SubVar name="ReportsMatch">2</SubVar>
<SubVar name="USPSProviderLevel">3</SubVar>
<SubVar name="RefFilesAddressCleanse">4</SubVar>
...
</SVConfiguration>

</SVConfigurations>
</DISubVarStore>

After importing the substitution parameter configurations to the repository, they can be used normally
in your data flows. For more information about using substitution parameters, see the “Variables and
Parameters, Substitution parameters” section of the Designer Guide.

9.3.11 Basic example

This example assumes that you have a simple job named myTestJob that calls a dataflow named
myTestDataflow. The dataflow contains a flat-file source (mySource), a Query transform (FormatFields),
and a flat-file target (myTarget).

Additionally, this example assumes that all objects for the job have been exported to a single XML file.

Example
All object definitions are enclosed in the DataIntegratorExport element.
<?xml version="1.0" encoding="UTF-8" ?>
<DataIntegratorExport repositoryVersion="12.2.0.0000"
productVersion="12.2.0.0">

The NameDate flat-file format definition is contained in the DIFlatFileDatastore element. Field names,
types, and sizes are defined in the DISchema block.
<DIFlatFileDatastore name="NameDate" typeId="3">

<DISchema>
<DIElement name="FirstName" datatype="VARCHAR" size="7">
</DIElement>
<DIElement name="LastName" datatype="VARCHAR" size="7">
</DIElement>
<DIElement name="DateOfBirth" datatype="VARCHAR" size="10">
</DIElement>

</DISchema>

2012-11-22144

Object creation XML toolkit

Various attributes, such as file name, directory, file type, column delimiter, and locale settings are
specified in the DIAttributes block, and the flat-file format definition is closed.
<DIAttributes>
<DIAttribute name="abap_file_format" value="no" />
<DIAttribute name="blank_pad" value="leading" />
<DIAttribute name="cache" value="yes" />
<DIAttribute name="column_delimiter" value="," />
<DIAttribute name="column_width" value="1" />
<DIAttribute name="column_width1" value="7" />
<DIAttribute name="column_width2" value="7" />
<DIAttribute name="column_width3" value="10" />
<DIAttribute name="date_format" value="yyyy.mm.dd" />
<DIAttribute name="datetime_format"
value="yyyy.mm.dd hh24:mi:ss" />

<DIAttribute name="file_format" value="ascii" />
<DIAttribute name="file_location" value="local" />
<DIAttribute name="file_name" value="NameDate.txt" />
<DIAttribute name="file_type" value="delimited_file" />
<DIAttribute name="locale_codepage" value="<default>" />
<DIAttribute name="locale_language" value="<default>" />
<DIAttribute name="locale_territory"
value="<default>" />

<DIAttribute name="name" value="NameDate" />
<DIAttribute name="reader_capture_data_conversion_errors"
value="no" />

<DIAttribute name="reader_capture_row_format_errors"
value="yes" />

<DIAttribute name="reader_error_file_name" value="" />
<DIAttribute name="reader_error_file_root_dir" value="" />
<DIAttribute name="reader_log_data_conversion_warnings"
value="yes" />

<DIAttribute name="reader_log_row_format_warnings"
value="yes" />

<DIAttribute name="reader_maximum_warnings_to_log"
value="-99" />

<DIAttribute name="reader_write_error_rows_to_file"
value="no" />

<DIAttribute name="root_dir"
value="C:\Data Services\Tutorial Files" />

<DIAttribute name="row_delimiter" value="\n" />
<DIAttribute name="skip_row_header" value="yes" />
<DIAttribute name="table_weight" value="0" />
<DIAttribute name="time_format" value="hh24:mi:ss" />
<DIAttribute name="transfer_custom" value="no" />
<DIAttribute name="use_root_dir" value="no" />
<DIAttribute name="write_bom" value="no" />
</DIAttributes>

</DIFlatFileDatastore>

The myTestJob job definition is contained in the DIJob element. The job contains a single step, calling
the myTestDataflow dataflow. Again, attributes related to tracing, statistics, and so on are found in the
DIAttributes block.
<DIJob name="myTestJob" typeId="2">

<DISteps>
<DICallStep typeId="1" calledObjectType="Dataflow"
name="myTestDataflow" >

</DICallStep>
</DISteps>

<DIAttributes>
<DIAttribute name="job_checkpoint_enabled" value="no" />
<DIAttribute name="job_collect_statistics" value="no" />
<DIAttribute name="job_collect_statistics_monitor"
value="no" />

<DIAttribute name="job_enable_assemblers" value="yes" />
<DIAttribute name="job_enable_audit" value="yes" />
<DIAttribute name="job_enable_dataquality" value="yes" />
<DIAttribute name="job_export_repo" value="no" />
<DIAttribute name="job_export_reports" value="no" />
<DIAttribute name="job_isrecoverable" value="no" />
<DIAttribute name="job_mode" value="Multi-Process" />
<DIAttribute name="job_monitor_sample_rate" value="1000" />

2012-11-22145

Object creation XML toolkit

<DIAttribute name="job_name" value="myTestJob" />
<DIAttribute name="job_print_version" value="no" />
<DIAttribute name="job_testmode_enabled" value="no" />
<DIAttribute name="job_trace_abapquery" value="no" />
<DIAttribute name="job_trace_all" value="no" />
<DIAttribute name="job_trace_ascomm" value="no" />
<DIAttribute name="job_trace_assemblers" value="no" />
<DIAttribute name="job_trace_audit" value="no" />
<DIAttribute name="job_trace_dataflow" value="yes" />
<DIAttribute name="job_trace_idoc_file" value="no" />
<DIAttribute name="job_trace_memory_loader" value="no" />
<DIAttribute name="job_trace_memory_reader" value="no" />
<DIAttribute name="job_trace_optimized_dataflow"
value="no" />

<DIAttribute name="job_trace_parallel_execution"
value="no" />

<DIAttribute name="job_trace_rfc_function" value="no" />
<DIAttribute name="job_trace_row" value="no" />
<DIAttribute name="job_trace_script" value="no" />
<DIAttribute name="job_trace_session" value="yes" />
<DIAttribute name="job_trace_sql_only" value="no" />
<DIAttribute name="job_trace_sqlfunctions" value="no" />
<DIAttribute name="job_trace_sqlloaders" value="no" />
<DIAttribute name="job_trace_sqlreaders" value="no" />
<DIAttribute name="job_trace_sqltransforms" value="no" />
<DIAttribute name="job_trace_stored_procedure" value="no" />
<DIAttribute name="job_trace_table" value="no" />
<DIAttribute name="job_trace_table_reader" value="no" />
<DIAttribute name="job_trace_transform" value="no" />
<DIAttribute name="job_trace_userfunction" value="no" />
<DIAttribute name="job_trace_usertransform" value="no" />
<DIAttribute name="job_trace_workflow" value="yes" />
<DIAttribute name="job_type" value="batch" />
<DIAttribute name="job_use_statistics" value="yes" />
<DIAttribute name="locale_codepage"
value="<default>" />

<DIAttribute name="locale_language"
value="<default>" />

<DIAttribute name="locale_territory"
value="<default>" />

</DIAttributes>

</DIJob>

The myTestDataflow dataflow definition is contained in the DIDataflow element.
<DIDataflow name="myTestDataflow" typeId="1">

Transforms are invoked within the DITransforms element. Because this dataflow has three transforms,
source, Query, and target, there are three corresponding sections in the DITransforms element.
<DITransforms>

The file-format source definition is contained in the DIFileSource element. The name of the output
schema is specified with the DIOutputView element. By default, the schema is given the same name
as the file format. However, you can change it to any unique name, provided you use the same name
in later transforms.

<DIFileSource typeId="33" formatName="NameDate"
filename="NameDate.txt">

<DIUIOptions>
<DIAttribute name="ui_display_name" value="mySource" />
</DIUIOptions>

<DIOutputView name="NameDate" />

<DIAttributes>
<DIAttribute name="adaptable" value="no" />
<DIAttribute name="cache" value="yes" />
<DIAttribute name="connection_port" value="no" />
<DIAttribute name="file_location" value="local" />
<DIAttribute name="name" value="NameDate" />

2012-11-22146

Object creation XML toolkit

<DIAttribute name="reader_filename_col"
value="DI_FILENAME" />

<DIAttribute name="reader_filename_col_size" value="100" />
<DIAttribute name="reader_filename_only" value="no" />
<DIAttribute name="reader_include_filename" value="no" />
<DIAttribute name="reader_maximum_warnings_to_log"
value="-99" />

<DIAttribute name="root_dir"
value="C:\Data Services\Tutorial Files" />

<DIAttribute name="table_weight" value="0" />
</DIAttributes>

</DIFileSource>

The FormatFields Query transform definition is contained in the DIQuery element. The output schema
name is specified with the DISchema element.
<DIQuery typeId="122" >

<DIUIOptions>
<DIAttribute name="ui_display_name" value="FormatFields" />
</DIUIOptions>

<DISchema name="FormatFields">

Each output field is defined with DIElement and DIAttributes elements. The ui_mapping_text attribute
for each output field is required by the Designer. For the Full Name output field, the expression shows
the concatenation of two input fields (FirstName and LastName). The additional encoded text is used
to maintain formatting within the Designer and is optional.
<DIElement name="FirstName" datatype="VARCHAR" size="7">
<DIAttributes>
<DIAttribute name="Description" value="" />
<DIAttribute name="ui_mapping_text"
value="NameDate.FirstName" />

</DIAttributes>
</DIElement>

<DIElement name="LastName" datatype="VARCHAR" size="7">
<DIAttributes>
<DIAttribute name="Description" value="" />
<DIAttribute name="ui_mapping_text"
value="NameDate.LastName" />

</DIAttributes>
</DIElement>

<DIElement name="DateOfBirth" datatype="VARCHAR" size="10">
<DIAttributes>
<DIAttribute name="Description" value="" />
<DIAttribute name="ui_mapping_text"
value="NameDate.DateOfBirth" />

</DIAttributes>
</DIElement>

<DIElement name="Full Name" datatype="VARCHAR" size="20">
<DIAttributes>
<DIAttribute name="Description" value="" />
<DIAttribute name="ui_mapping_text"
value="NameDate.FirstName ||
NameDate.LastName

" />

</DIAttributes>
</DIElement>

</DISchema>

The SQL select projection syntax is contained in the DISelect and DIProjection elements, and varies
depending on how the Query transform is configured.

<DISelect>
<DIProjection>

2012-11-22147

Object creation XML toolkit

Each output field is defined in a DIExpression element. The expr attribute contains the actual ATL
expression as displayed in the Designer. Note that each field contains an additional XML representation
of the expression. This additional representation is optional, and not required for correct operation.
<DIExpression isString="true" expr="NameDate.FirstName">
<COLUMN_REFERENCE qualifier1="NameDate" column="FirstName" />
</DIExpression>

<DIExpression isString="true" expr="NameDate.LastName">
<COLUMN_REFERENCE qualifier1="NameDate" column="LastName" />
</DIExpression>

<DIExpression isString="true" expr="NameDate.DateOfBirth">
<COLUMN_REFERENCE qualifier1="NameDate"
column="DateOfBirth" />

</DIExpression>

<DIExpression isString="true" expr="(NameDate.FirstName ||
NameDate.LastName)">

<CONCAT>
<COLUMN_REFERENCE qualifier1="NameDate" column="FirstName" />
<COLUMN_REFERENCE qualifier1="NameDate" column="LastName" />
</CONCAT>
</DIExpression>

</DIProjection>

The input schema for the Query is defined using the DIFrom element. Attributes for the Query are
specified in a DIAttributes block.
<DIFrom>
<DITableSpec name="NameDate" />
</DIFrom>
</DISelect>

<DIAttributes>
<DIAttribute name="distinct_run_as_separate_process"
value="no" />

<DIAttribute name="group_by_run_as_separate_process"
value="no" />

<DIAttribute name="join_run_as_separate_process"
value="no" />

<DIAttribute name="order_by_run_as_separate_process"
value="no" />

<DIAttribute name="run_as_separate_process" value="no" />
</DIAttributes>

</DIQuery>

The file-format target is defined within the DIFileTarget element
<DIFileTarget typeId="3" formatName="NameDate"
filename="NameDate_out.txt">

<DIUIOptions>
<DIAttribute name="ui_display_name" value="myTarget" />
</DIUIOptions>

The input schema for the target is specified using the DIInputView element, and attributes for the target
are specified using a DIAttributes block.
<DIInputView name="FormatFields" />

<DIAttributes>
<DIAttribute name="connection_port" value="no" />
<DIAttribute name="file_location" value="local" />
<DIAttribute name="isstreamdebugfile" value="no" />
<DIAttribute name="loader_load_choice" value="replace" />
<DIAttribute name="name" value="NameDate" />
<DIAttribute name="root_dir" value="D:\temp" />
<DIAttribute name="validate_decimal_data" value="yes" />
</DIAttributes>

2012-11-22148

Object creation XML toolkit

</DIFileTarget>

</DITransforms>

Attributes for the myTestDataflow dataflow are specified in a DIAttributes block, and the file is finished
by closing the DataIntegratorExport element.
<DIAttributes>
<DIAttribute name="Cache_type" value="pageable_cache" />
<DIAttribute name="Parallelism_degree" value="0" />
<DIAttribute name="allows_both_input_and_output"
value="yes" />

<DIAttribute name="run_once" value="no" />
<DIAttribute name="use_dataflow_links" value="no" />
<DIAttribute name="use_datastore_links" value="yes" />
<DIAttribute name="validation_xform_exists" value="no" />
<DIAttribute name="validation_xform_stats" value="no" />
</DIAttributes>

</DIDataflow>

</DataIntegratorExport>

2012-11-22149

Object creation XML toolkit

2012-11-22150

Object creation XML toolkit

Job launcher execution commands

The job launcher, exported as part of a job's execution commands, includes a specific command line
option for server groups. You can use this option to change the job servers in a server group.

For complete information about the job launcher, see the Management Console Guide.

The following table lists job launcher flags and their values.

ValueFlag

The job launcher starts the job(s) and then waits before passing back the job
status. If -w is not specified, the launcher exits immediately after starting a job.-w

The time, in milliseconds, that the Job Server waits before checking a job's status.
This is a companion argument for -w.-t

Status or return code. 0 indicates successful completion, non-zero indicates an
error condition.

Combine -w, -t, and -s to execute the job, wait for completion, and return the
status.

-s

Name of the engine command file (path to a file which contains the Command
line arguments to be sent to the engine).-C

Prints AL_RWJobLauncher version number.-v

Lists the server group and Job Servers it contains using the following syntax:
"SvrGroupName;JobSvr1Name:JobSvr1Host:JobSvr1Port;JobSvr2Name:JobSvr2Host:JobSvr2Port";

For example: "SG_DEV;JS1:HPSVR1:3500;JS2:WINSVR4:3505";

-S

The location and name of the password file. Replaces the hard-coded repository
connection values for -S, -N, -U, -P.-R

2012-11-22151

Job launcher execution commands

There are two arguments that do not use flags:
• inet address—The host name and port number of the Job Server. The string must be in quotes.

For example:

"inet:HPSVR1:3500"

If you use a server group, inet addresses are automatically rewritten using the -S flag arguments.
On execution, the first Job Server in the group checks with the others and the Job Server with the
lightest load executes the job.

• server log path—The fully qualified path to the location of the log files. The server log path
must be in quotes. The server log path argument does not appear on an exported batch job launch
command file. It appears only when the software generates a file for an active job schedule and
stores it in the following directory: <DS_COMMON_DIR>/Log/JobServerName/Repository
Name/JobInstanceName

You cannot manually edit server log paths.

For complete information about the job launcher, see the Management Console Guide.

2012-11-22152

Job launcher execution commands

Legacy adapter information

11.1 Legacy adapter for external web services

Caution:
This section is provided for legacy reference only. For improved performance in new web service data
flows, use the native web service datastore type.

You can add functionality to SAP BusinessObjects Data Services to invoke web services in external
applications from data flows. This functionality requires configuring the software's built-in Web Services
Adapter. The Web Services Adapter provides support for locating and importing metadata for a web
services server as well as invoking web service operations.

The Web Services Adapter works by sending a request and waiting until it receives a reply from a web
services server.

For example, you might create a web services server as a front-end to a legacy application. You could
call the web services server daily from a data flow to access inventory and update an inventory data
mart.

The interaction between the Web Services Adapter and an external web service has these parts:
• Creating an adapter datastore that identifies the WSDL, which describes the web services server.

• Importing metadata to extract the information form the WSDL needed to access the web service
server.

• Creating a data flow that uses the imported function call to call the web services server.

Related Topics
• To access a web service using the Designer

11.1.1 Legacy adapter installation

The Web Services Adapter is part of each Job Server installation. The installer automatically configures
an adapter instance in the Administrator, which is the only adapter instance that SAP BusinessObjects
Data Services requires to configure a web services client. You do not need to configure adapter
operations. The software automatically configures the Web Services Adapter with Autostart set to

2012-11-22153

Legacy adapter information

FALSE so that it does not consume resources when you do not use Web services. However, you can
invoke adapters set withAutostart disabled, when needed. You do not need to edit the adapter instance
that the software provides for the Web Services Adapter.

The installer allows you to configure a Job Server to manage adapters by presenting a list of Job Servers
to you during installation. To view any adapter instance in the Administrator, select Adapter Instance
> Job Server.

The software creates the following values for an adapter instance.

Value automatically insertedField name

WebServiceAdapter Instance Name

(not required) BlankAccess Sever host

(not required) BlankAccess Server port

(default value) 0Adapter Retry count

(default value) 3000Adapter Retry Interval

JAR files required in the classpath to start the Java process:

LINK_DIR/lib/acta_adapter_sdk.jar

LINK_DIR/lib/acta_broker_client.jar

LINK_DIR/lib/acta_tool.jar

LINK_DIR/ext/lib/xerces.jar

LINK_DIR/lib/acta_webservice_adapter.jar

LINK_DIR/ext/lib/qname.jar

LINK_DIR/ext/lib/axis.jar

LINK_DIR/ext/lib/commons-logging.jar

LINK_DIR/ext/lib/commons-discovery.jar

LINK_DIR/ext/lib/wsdl4j.jar

LINK_DIR/ext/lib/saaj.jar

LINK_DIR/ext/lib/jaxrpc.jar

ClassPath

TRUEAutoStart

FALSE (If set to TRUE, the adapter writes trace messages to
the WebService_trace.txt file in the <DS_COM
MON_DIR>/adapters/log directory)

Trace Mode

(default values) -Xms64m -Xmx256mAdditional Java launcher options

2012-11-22154

Legacy adapter information

Value automatically insertedField name

(Read-only) Name of adapter used to create this instanceAdapter type name

(Read-only) Version of adapter used to create this instanceAdapter version

(Read-only) Name that identifies the adapter entry pointAdapter class

11.1.2 Legacy adapter configuration

To configure access to a specific web service, use the Designer. In the Designer's Datastore Editor
window, specify the datastore as an adapter datastore, select the Job Server that is managing the Web
Services Adapter, and select the Web Services Adapter. Data Services provides access to web services
as stream-oriented function calls, which it configures when you import metadata.

When you configure an adapter datastore, in addition to the normal adapter settings, specify the URL
of the web services server for a data flow to access. It must be the same URL that accepts a web service
connection and returns the WSDL.

The adapter connects to the web services server using the URL to locate the definitions of published
services.

11.1.2.1 To access a web service

1. Create an adapter datastore:
a. Use the Web Services Adapter instance that SAP BusinessObjects Data Services automatically

creates during installation.
b. In the datastore editor under Adapter Options, configure the following parameters:

• URL of the Web Service — Enter the URL of the web services server. This URL must accept
a web service connection and return the WSDL. This information is required for data flow
access.

• XML Recursion Level — Enter the number of passes the software should run through the
XSD to resolve names. The default is 0.

• Keystore Path — If the web services server uses an SSL connection, specify the location of
the keystore used to establish the connection. When unsure, contact your network
administrator.

• User Name — Enter your user name for HTTP basic authentication.

• Password — Enter your password for HTTP basic authentication.

2012-11-22155

Legacy adapter information

Note:
To obtain user name and password information, contact your web services provider.

c. Click OK.

2. Import metadata:
a. From the object library, double-click a Web Services Adapter datastore.

The Designer calls the adapter. The adapter calls the web services server at the indicated WSDL
URL and obtains a list of published services and ports.

b. Expand the ports to see the published operations available for import.

The list reflects the name and description of operations currently published by the configured
web service.

c. Right-click an operation and select Import.

The software imports web service operations as function calls and lists them under the Web
Services Adapter datastore in the object library. Each function call includes a definition for both
the input and output messages required for communication with a web service operation. The
adapter extracts the details about the request and reply messages and generates XML Schema
files that describe the messages.

3. From the Designer, add a web service function call to a job.

As a web services client, the software calls a web services server twice:
• During design time to import metadata for the functions and data types that a particular web

service supports.

• During run time to call the web service and invoke this functionality.

11.1.2.2 To add web service calls to a job

Once an adapter datastore is created and metadata is imported, use the following procedure to add a
function call to an SAP BusinessObjects Data Services job.
1. Open the Designer.
2. Create a Web Services Adapter datastore.
3. Import operation metadata from an external web service.
4. Add a query to your job.
5. Open the query editor, right-click the target schema and select New Function call.

The Function Editor opens listing the operation metadata that you imported under its datastore name.

6. Select a datastore to view the metadata that you want to add to your job.
7. Select the metadata name and click Next.
8. Map the input schema to the output schema.

2012-11-22156

Legacy adapter information

Note:
If you want to nest data in the target schema, use this first query to place the schema in your job
and additional queries to perform the nesting. The Function Editor does not allow complex schema
configuration.

9. Click OK.

The imported schema appears in the query.

10. Configure the remainder of your job by supplying input to the function call and extracting the response
information obtained from the web service.

11.1.3 Configuring SSL with the legacy adapter

With Secure Socket Layer (SSL), the web services adapter can use secure transport over TCP/IP
networks.

The overall process is:
• Generate certificates and keystores for both the server and client.
• Configure the web server.
• Configure the SAP BusinessObjects Data Services web services adapter.

11.1.3.1 To generate certificates and keystores

1. Generate the server keystore.
2. Export the certificate from the server keystore to a file and get it signed by an authorized Certificate

Authority.
3. Generate the client keystore.
4. Export the certificate from the client keystore to a file and get it signed by an authorized Certificate

Authority.
5. Import the client's certificate into the server's keystore.
6. Import the server's certificate into client's keystore.

11.1.3.2 To configure Tomcat and the legacy adapter

2012-11-22157

Legacy adapter information

1. Uncomment the following entry from the server-di.xml file in the TOMCAT_HOME/conf directory.

<Connector port="8443"
maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
enableLookups="false" disableUploadTimeout="true"
acceptCount="100" debug="1" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS" />

2. Inside the Connector tag, add/update the value of the keystoreFile and keystorePass
parameters. The keystoreFile parameter should contain the *.keystore file path created when
generating the keystore. The keystorePass parameter should contain the password used to create
the keystore when generating it.

3. You might also need to modify the wrapper.properties file in the LINK_DIR\ext\webserv
er\conf directory. In the section Defining the classpath, ensure the following third-party
libraries are in the path:

wrapper.class_path=$(ACTAHOME)\ext\lib\jnet.jar
wrapper.class_path=$(ACTAHOME)\ext\lib\jsse.jar
wrapper.class_path=$(ACTAHOME)\ext\lib\jcert.jar

4. After completing the configuration changes, restart the web server. If the web server starts
successfully, then you should be able to access any web application supported by Tomcat via SSL.

5. In the Designer, configure the web services adapter by opening the adapter datastore, click
Advanced, and enter the client keystore path.

11.1.4 Legacy adapter error messages

In addition to the error logs, the following list identifies web services client error messages and their
descriptions:
• Web services client is unable to create a SOAP request to send to a server. Error =

<adapter-generated exception message>

The Web Services Adapter returns this error message if the XML message passed from SAP
BusinessObjects Data Services as a Web Services Adapter function call could not be packaged into
a SOAP Envelope. Processing stops before a call to a web services server is made.

To find extended error information, see the Web Services Adapter trace log file (Adapter Instances
> JobServerName). To use extended diagnostics, use debug tracing in the webadmin.log file.

• Web services client is unable to invoke a web services server. Error = <adapter-generated exception
message>

The client returns this error message if the Web Services Adapter cannot call the web services
server. It indicates that the adapter has successfully packaged the XML message passed from the
software into a SOAP Envelope. However, the call to the web services server is not going through.
In most cases, this will be an error in locating the service, not a case of the service refusing a request.
If a web service operation is refusing a request, it will return a fault message.

2012-11-22158

Legacy adapter information

To find extended error information, see the Web Services Adapter trace log file (Adapter Instances
> JobServerName). To use extended diagnostics, use debug tracing in the webadmin.log file.

• Web services client called a web services server. The server returned the following fault message:
<server-generated error message>

The client returns this error message if the web services server is called and returns a fault message
indicating the call failed. The adapter has successfully packaged the XML message passed from
the software into a SOAP Envelope, called the web services server, and the server received the
call.

To find extended error information, see the Web Services Adapter trace log file (Adapter Instances
> JobServerName) and perhaps the server itself if it maintains diagnostics. To use extended
diagnostics, use debug tracing in the webadmin.log file.

• Web services client called a web services server and received a reply that cannot be interpreted.
Error = < adapter-generated exception message >

The client returns this error message if the SOAP Envelope returned from the web services server
cannot be unpacked to extract the XML message to be returned to the job.

To find extended error information, see the Web Services Adapter trace log file (Adapter Instances
> JobServerName). To use extended diagnostics, use debug tracing in the webadmin.log file.

2012-11-22159

Legacy adapter information

2012-11-22160

Legacy adapter information

Index
A

adapter datastore
defining 101
to define 102
to import message functions 102
to outbound messages 102

Adapter Manager Job Server 68
Adapter overview 64

B

Batch_Job_Admin operations
Get_BatchJob_List 30
Get_BatchJob_RunIDs 30
Get_BatchJob_Status 31
Get_Error_Log 32
Get_Job_Input_Format 33
Get_Monitor_Log 33
Get_Trace_Log 34
Run_Batch_Job 35
Stop_Batch_Job 36

Build a WSDL file 19

C

cms_authentication 26
cms_system 26
Connect method 57
Connection class 57
Connection operations

Logon 26
Logout 27
Ping 26

connection pool 46

D

DataServices_Operations port
Delete_Repo_Objects 40
Export_DQReport 45
Import_Repo_Object 42
Validate_Repo_Object 43

DTD 37

E

Exception handlers 57
Export_DQReport operation 45

H

HTTP Adapter
configuration 95
configuring SSL 103
error handling 107
installation 95
instance configuration information

97
to configure 96
to configure an instance 96
tracing 107

HTTP Adapter architecture 94
HTTP header fields

configuring 53
dynamic 54
standard 54

I

Invoke method 57

J

Java Messaging Service (JMS) 64
JMS adapter 63

adapter datastore 68
adapter instance 67
adapter operation 67
Adapter product components 66
adding an operation instance 71
architecture and functionality 66
configure adapter connections 68
configuring 67
configuring the JMS Connection

Factory 92
configuring the JMS provider 81
creating a JMS Connection Factory

91
creating a JMS queue 92
defining a datastore 77
design considerations 90
editing adapter configurations 68
error handling and tracing 90
Get operation 80
Get Operation 67
Get Operation options 75
GetTopic operation 80
GetTopic Operation 67

JMS adapter (continued)
GetTopic Operation options 76
importing message functions 78
importing outbound messages 78
installing 65
instance configuration information

68
JMS topic 66
MQ configuration 82
operation instance configuration

options 71
Point to Point (P2P) 66
Publish/Subscribe 66
Put operation 79
Put Operation 67
Put Operation options 71
PutGet operation 79
PutGet Operation 67
PutGet Operation options 73
PutTopic operation 79
PutTopic Operation 67
PutTopic Operation options 72
running the sample 80
scope 64
starting 79
system prerequisites 65
testing Get 85, 88
testing GetTopic 87
testing Put 89
testing PutGet 82
testing PutTopic 84
Weblogic 91

Job Server
adapter manager 68

L

Legacy web services adapter
error reporting 158

M

Message Client API
closing connection 59
creating connection 58
pseudo code example 59
sending messages 58

Message Oriented Middleware (MOM)
64

2012-11-22161

O

object creation XML tookit schema
database datastore 134
database table 135
database table source 137
database table target 138
file format source 132
file format target 133
query transform 141
script 128

object creation XML toolkit 117
adapting objects 118
best practices 121
Data Quality hierarchy 140
Data Quality inheritance 140
encrypting passwords 120
exporting objects 118
limitations 122
schema reference 122
templating objects 118
using 117
using parameters and variables

143
using web services 119

object creation XML toolkit schema
basic example 144
batch job 123
dataflow 127
file format 129
workflow 126

operation instance
configuration information 99
to configure 98

R

real-time performance
optimizing 46

Realtime_Service_Admin operations
Get_RTMsg_Format 28
Get_RTService_List 28
Run_Realtime_Service 29

RTServiceClient
connect 59, 61
disconnect 59, 61
invoke 59, 61

RTServiceClientError 60

S

SOAP client 17, 19, 25
SoapAction element 39

U

UDDI, defined 15

W

web service
to access 51
to add calls to a job 53

web services
calling jobs 25
definitions for, batch operations 38
definitions for, connection port

operations 26
definitions for,

DataServices_Operations port
40

definitions for, real-time service
operations 37

design choices 25
fault message 38
overview 13
SOAP 14
syntax for, batch operations 38
technologies 14
WS-Security 55, 56
WSDL versions 24
WSDL, elements 18
XML Schemas 15

Web services
adapter 153
adapter, default instance values

153
architecture 19
call-in functionality, defined 17
call-in functionality, security 39
call-out functionality, defined 51,

153
create a client 24
datastore 51
definitions for, service and ports 25
fault message 37

Web services (continued)
syntax for, real-time service

operations 38
UDDI 15
WSDL 15
WSDL, to generate 19
XML Schemas 15, 23

Web services server, error reporting
48

WS-Security
configuring a datastore 56
enabling 55, 56

WSDL 19

X

XML Schema 37
XML schema reference

Data Quality transforms 139
XML toolkit 117

adapting objects 118
best practices 121
Data Quality hierarchy 140
Data Quality inheritance 140
encrypting passwords 120
exporting objects 118
limitations 122
schema reference 122
templating objects 118
using 117
using parameters and variables

143
using web services 119

XML toolkit schema
basic example 144
batch job 123
database datastore 134
database table 135
database table source 137
database table target 138
dataflow 127
file format 129
file format source 132
file format target 133
query transform 141
script 128
workflow 126

2012-11-22162

Index

	Integrator's Guide
	Contents
	Welcome to SAP BusinessObjects Data Services
	Welcome
	Documentation set for SAP BusinessObjects Data Services
	Accessing documentation
	Accessing documentation on Windows
	Accessing documentation on UNIX
	Accessing documentation from the Web

	SAP BusinessObjects information resources

	Web service support
	Overview
	Web services technologies
	SOAP
	WSDL
	XML Schema
	UDDI

	Using SAP BusinessObjects Data Services as a web service provider
	WSDL basics
	Building a WSDL file
	To configure web service information using the Administrator

	Tips for using the WSDL file
	WSDL versions

	Creating a client to use web services
	Design choices

	Supported web service operations
	Connection port
	Ping
	Logon
	Logout

	Realtime_Service_Admin port
	Get_RTMsg_Format
	Get_RTService_List
	Run_Realtime_Service

	Batch_Job_Admin port
	Get_BatchJob_List
	Get_BatchJob_RunIDs
	Get_BatchJob_Status
	Get_Error_Log
	Get_Job_Input_Format
	Get_Monitor_Log
	Get_Trace_Log
	Run_Batch_Job
	Stop_Batch_Job

	Real-time_Services port
	Message formats

	Batch_Jobs port
	SoapAction element
	Security

	Repo_Operations port
	Delete_Repo_Objects
	Import_Repo_Object
	Validate_Repo_Object
	Export_DQReport

	Optimizing real-time web service performance
	Enabling SSL support
	To configure SSL on the web application server

	Error reporting
	Administrator log
	Web service log
	Error messages

	Consuming external web services in SAP BusinessObjects Data Services
	To access a web service using the Designer
	To add web service calls to a job
	Configuring HTTP header fields
	To configure standard HTTP header fields
	To configure dynamic HTTP header fields

	Enabling SSL support
	To configure SSL on the native web service datastore
	To configure SSL in the runtime execution file

	Enabling WS-Security support
	To configure WS-Security on the native web service datastore

	Using the Message Client API
	Interface components
	Creating the connection
	Sending messages
	Closing the connection
	Pseudo code example
	C++ API reference
	Class RTServiceClient
	Class RTServiceClientError

	Java API reference
	Class RTServiceClient

	Using the JMS adapter
	Introduction
	About this section
	Who should read this section?

	Adapter overview
	About Java Messaging Service (JMS)
	Scope of the JMS adapter

	Installation and configuration
	JMS adapter installation
	System prerequisites
	Adapter product components

	JMS adapter configuration
	To configure the JMS adapter
	To configure an adapter instance in the Administrator
	Adapter instance configuration information

	To add an operation instance to an adapter instance
	Operation instance configuration options
	Put Operation (request/acknowledgement) options
	PutTopic Operation (request/acknowledgement) options
	PutGet Operation (request/reply) options
	Get Operation (request/reply and request/acknowledgement) options
	GetTopic Operation (request/acknowledgement only) options

	Defining a JMS adapter datastore
	To define a JMS adapter datastore

	Importing message functions and outbound messages to the datastore
	To import message functions and outbound messages

	Using the JMS adapter
	To start an instance of the JMS adapter
	Operations from SAP BusinessObjects Data Services to the JMS adapter
	Request/Reply - PutGet operation
	Request/Acknowledge - Put operation
	Request/Acknowledge - PutTopic operation

	Operations from Information Resource (IR) to Data Services
	Request/Reply - Get operation
	Request/Acknowledge - Get operation
	Request/Acknowledge - GetTopic operation

	To run the sample
	Configuring the JMS provider
	To use MQ instead of JNDI configuration

	Testing PutGet: Request/Reply
	Testing PutTopic: Request/Acknowledge
	Testing Get: Request/Reply
	Testing GetTopic: Request/Acknowledge
	Testing Get: Request/Acknowledge
	Testing Put: Request/Acknowledge
	Technical implementation
	Design considerations
	Error handling and tracing

	Appendix
	Weblogic as JMS provider
	To create a JMS Connection Factory
	To configure the JMS Connection Factory
	To create a JMS queue

	Using the HTTP adapter
	Introduction
	Audience and assumptions
	About this section

	Overview
	Architecture
	Installation and configuration
	To configure the HTTP Adapter
	To configure an HTTP Adapter instance
	Adapter instance configuration information

	To configure an operation instance
	Operation instance configuration information

	Defining the adapter datastore
	To define an adapter datastore
	To import message functions and outbound messages

	Configuring SSL with the HTTP adapter

	Using the HTTP Adapter
	Testing the Request/Reply operation
	Testing the Request/Acknowledge operation

	Error handling and tracing

	Using the SuccessFactors adapter
	About this section
	Overview
	Audience and assumptions

	Installation and configuration
	Configure the SuccessFactors adapter instance
	Start and stop the adapter instance
	Create a SuccessFactor adaptor datastore
	Browse and import metadata
	Metadata mapping

	Use SuccessFactor tables as a source or a target in your dataflow
	Manually add the SuccessFactors certificate

	Object creation XML toolkit
	Overview
	Using the toolkit
	Templating objects
	Exporting objects
	Adapting objects
	Using web services
	Encrypting passwords
	Best practices
	Limitations

	XML schema reference
	Batch job
	Workflow
	Dataflow
	Script
	File format
	To use as a source
	To use as a target

	Database datastore
	Database table
	To use as a source
	To use as a target

	Data Quality transforms
	Hierarchy and inheritance

	Query transform
	Parameters and variables
	Basic example

	Job launcher execution commands
	Legacy adapter information
	Legacy adapter for external web services
	Legacy adapter installation
	Legacy adapter configuration
	To access a web service
	To add web service calls to a job

	Configuring SSL with the legacy adapter
	To generate certificates and keystores
	To configure Tomcat and the legacy adapter

	Legacy adapter error messages

	Index

